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Abstract
Natural Language Processing (NLP) tasks are001
data-hungry and when the situation arises,002
where data is scarce, NLP models often fail003
to carry out reliable generalizations. Humans004
can, however, generalize only by seeing a few005
labeled examples on a specific task. Motivated006
by this, the rise in popularity in techniques that007
can generalize to new tasks containing only a008
few samples, called Few-Shot Learning, was009
inevitable. This survey discusses pre-trained010
Language Models and Meta-Learning for Few-011
Shot Training and Transfer in NLP, critically012
assess their application and identifies future013
work. Furthermore, we study the application014
of Few-Shot approaches in a cross-lingual set-015
ting.016

1 Introduction017

Deep learning methods defined NLP in recent018

years, achieving impressive performance when suf-019

ficient amounts of labeled data are available. How-020

ever, from a practical view, in many tasks, a large021

scale dataset is not available, e.g. low-resource lan-022

guages, and annotating new labeled data labels is023

expensive and time-consuming (Fort, 2016), leav-024

ing us with only building more efficient algorithms025

as conventional deep learning methods fail in this026

low data regime (Yogatama et al., 2019). Humans,027

on the other hand, only need a few demonstrations028

to learn new language tasks. Motivated by this,029

Few-Shot Learning tries to solve all those issues by030

learning just from a few labeled samples.031

1.1 Few-Shot Scenario032

Few-Shot Learning (FSL) is the ability to learn033

tasks with limited examples. Most existing FSL034

problems are supervised learning problems, which035

is our focus in this survey. In an (N -way-)K-shot036

classification problem, we are only givenK labeled037

examples per class, where the number of classes038

is N . K-shot regression estimates a regression039

function given only K input-output example pairs.040

To understand the challenges and approaches to 041

Few-Shot Learning, we first analyze existing State- 042

of-the-Art (SOTA) supervised approaches for NLP 043

tasks. 044

1.2 Inducing Prior Knowledge 045

In a normal supervised setting, we would train our 046

model on hundreds of thousands to millions of in- 047

put–output pairs, which found success in numerous 048

fields. However studies show that in NLP tasks, 049

this paradigm of supervised learning does not gen- 050

eralize well outside the training data characteristics 051

(Jia and Liang, 2017; Belinkov and Bisk, 2018), 052

even when provided with enormous training data. 053

The models are sensitive to noise, adversarial ex- 054

amples and are prone to overfitting. The reason 055

is that language is complex and diverse and when 056

conditions change, e.g. a new domain, the model 057

is not able to adapt. Without any modification to 058

the supervised approach, our Few-Shot Learning 059

scenario will even amplify the poor generalization. 060

The most prominent way to help generaliza- 061

tion is to induce an inductive bias by using trans- 062

fer learning (Ruder, 2019), especially using pre- 063

trained representations. In the last years, NLP saw 064

the rise of pre-trained language representations for 065

downstream tasks, achieving new SOTA on many 066

NLP tasks. First, single-layer representations using 067

word embedding vectors (Mikolov et al., 2013a) 068

followed by contextualized word embeddings (Dai 069

and Le, 2015; McCann et al., 2018a; Peters et al., 070

2018) were proposed, which were both simply 071

fed into a task-specific architecture. With the rise 072

of transformer language models (Vaswani et al., 073

2017), which enable direct finetuning of the whole 074

architecture, there was no need for task-specific 075

architectures anymore (Devlin et al., 2019). This 076

was a breakthrough for NLP as many SOTA on 077

NLP tasks were achieved by finetuning on task- 078

specific samples using transformers, that are sim- 079

ply pre-trained on a language modeling objective 080
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Figure 1: F1 scores on SQuAD as a function of the
number of training examples (log scale) (Yogatama
et al., 2019). BERT+supervised and ELMo+supervised de-
note BERT and ELMo models that are pre-trained on
other similar tasks, BERTscratch denotes a Transformer
with a similar architecture to BERT that is trained from
scratch.

in a semi-supervised fashion, inducing contextual-081

ized word embeddings. Clark et al. (2019) show082

that a pre-trained transformer model, like BERT,083

obtain knowledge about characteristics of the lan-084

guage, e.g. syntax and semantics as well as certain085

facts about the world, in short, have some general-086

purpose language understanding capacity, which087

can explain the generalization ability on a finetuned088

task.089

1.3 Few-Shot Learning Challenges090

One could naively apply the same strategy as in091

a normal supervised setting for our Few-Shot sce-092

nario: Finetune a pre-trained transformer model093

on the few labeled examples. Even though the pre-094

training helps the model to generalize on a new095

task, a sufficient amount of labeled data (Yogatama096

et al., 2019) is still needed in order to get reasonable097

results. The Figure 1 shows that in Few-Shot sce-098

narios (i.e. < 1000 examples), all models lack far099

behind the fully trained variants, indicating sam-100

ple inefficiency of the transformer model BERT.101

Additionally, the BERTscratch does not learn much102

without inducing an inductive bias via pre-training,103

showing the importance of the procedure. The Fig-104

ure 1 also shows that, pre-training (sequentially)105

on similar tasks can help in a Few-Shot scenario,106

however, the sample inefficiency remains. Similar107

to this, Multi-Task Learning leverages information108

contained in multiple related tasks to help improve109

the generalization performance on all tasks (Zhang110

and Yang, 2021). Nonetheless, the method favors111

tasks with significantly more data, making it unsuit-112

able for Few-Shot tasks. Another problem of big113

transformers is that they suffer from high variance 114

(Phang et al., 2019; Dodge et al., 2020). This is 115

amplified in a Few-Shot scenario, where Language 116

Models only finetune on a few samples (Zhang 117

et al., 2021; Zhao et al., 2020). Changing the set 118

of training examples can result in significant per- 119

formance differences. Therefore, it is essential to 120

use the same set or average between multiple equal 121

sets when comparing Few-Shot approaches, mak- 122

ing it hard to compare different approaches. (Zhang 123

et al., 2021) provide alternative practices to reduce 124

instability. 125

The question remains, how a transformer model 126

can effectively leverage the few given examples 127

without suffering from high variance. Section 128

2 describes a method that tries to exploit the in- 129

duced bias of pre-trained language models explic- 130

itly through using the model directly by reformulat- 131

ing the task as a language model problem. Driven 132

by the results of pre-training sequentially on similar 133

tasks, see Figure 1, Section 3 will analyze Meta- 134

Learning Approaches, which also "pre-train" on 135

similar tasks to induce an inductive bias with the 136

goal to use the model in a Few-Shot scenario. Sec- 137

tion 4 will cover the use-case of K-Shot Cross- 138

Lingual Transfer. Finally, Section 5 will conclude 139

this survey. 140

2 Reformulating Tasks as Language 141

Modelling Problems 142

As pre-trained language models possess some gen- 143

eral language purpose understanding, the idea is 144

to solve Few-Shot Learning tasks through directly 145

using the obtained linguistic knowledge by refor- 146

mulating tasks as language modeling problems and 147

then predicting labels as "fill-in-the-blank" tasks, 148

sharing the same format as pre-training LMs. 149

2.1 Approaches 150

Brown et al. (2020) introduces GPT-3, which es- 151

sentially uses the same model as GTP-2 (Radford 152

et al., 2019), but scales the data, training time, 153

and model to 175 billion parameters. On the con- 154

trary to standard finetuning that condition on the 155

task on the algorithmic level p(output|input), the 156

idea of GPT series is to condition the model on 157

the selected task p(output|input, task), by induc- 158

ing the task into the text sequence with a task 159

description. A reading comprehension training 160

example could be formulated as (answer the 161

question, document question, answer). 162
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To create a training set, they scraped web pages,163

but with a focus on document quality. The hope is164

that task formulations occur naturally in the dataset.165

Brown et al. (2020) explore different settings for166

learning within context, which means that during167

inference, the model is given a prompt, which con-168

sists of a task description and K examples of con-169

text and completion, which they call model prim-170

ing. Then to make predictions, one final context is171

given, but the model has to fill in the completion.172

One important note is, that the model does not do173

any weight updates during inference, even after174

seeing the K examples, leaving room for more op-175

timization. Additionally, K is upper bounded by176

the context windows size (nctx = 2048), meaning177

that typically the window fits around 10 to 100 ex-178

amples. With this strategy of using the pre-trained179

language model directly, GTP-3 shows impressive180

Few-Shot capabilities across diverse tasks, surpass-181

ing some strong finetuned models baselines, such182

as tasks in the SuperGLUE benchmarks (Wang183

et al., 2020) by only giving 32 labeled examples.184

However, for finding the right prompt, a hold out185

set is necessary, which then in return needs more186

examples. As we are in a Few-Shot scenario, this187

makes it difficult to obtain a sufficiently large hold188

out set. As GTP-3 naively concatenates the K189

randomly selected examples (as the model’s input190

size is bounded) with the input to create their in-191

context learning, the model does not make sure192

that the most informative demonstration are prior-193

itized. However, prioritizing is important, since194

the number of usable demonstrations is bounded195

by the model’s input size. We will call this prob-196

lem in-context selection problem. Furthermore,197

as GPT-3 uses an autoregressive language model,198

experiments do not include any bidirectional archi-199

tectures, even though Raffel et al. (2020) indicate200

that (finetuned) models benefit from such bidirec-201

tionality to solve NLP tasks. Finally, as GPT-3202

has 175 billion parameters, performing inference203

is expensive and makes it impracticable for many204

applications.205

Schick and Schütze (2021b) introduce iPET, a206

task-agnostic method for Few-Shot Learning that207

can perform on par with the GTP-3 model on the208

SuperGLUE dataset using a 785 times smaller Lan-209

guage Model, making the approach more "greener"210

and practical. Instead of providing prompts, as211

in the GPT models, iPET uses pattern-exploiting212

training (PET) (Schick and Schütze, 2021a), which213

reformulates tasks as cloze questions (no additional 214

context samples provided) with regular gradient- 215

based finetuning. Addititionally, the model utilizes 216

gradient steps after seeing the K examples. For 217

that, PET requires a pattern-verbalizer pairs (PVPs) 218

p = (P, v), which maps the input x of a task to 219

a cloze question formulation. They call this a pat- 220

tern P . Then for each possible output y of the 221

task, PET maps it to a single token, representing its 222

task-specific meaning in the pattern, called verbal- 223

izer v. Now, given a pre-trained masked language 224

model, we only have to check the probabilities of 225

the mapped output v(y) being the correct token at 226

the masked position. To generate good PVPs on a 227

small development set of held out tasks, PET uses 228

a combination of 3 PVPs per pattern for which a 229

separate pre-trained MLM is first finetuned on the 230

given (small) training set and then used to anno- 231

tate unlabeled examples. Finally, the soft-labeled 232

dataset is used to finetune a single sequence clas- 233

sifier, which is closely related to knowledge distil- 234

lation (Hinton et al., 2015). However, PET only 235

works when the answer is a single token. Schick 236

and Schütze (2021b) proposes iPET, which modi- 237

fies PET to handle more than just one token during 238

predictions and refines the generation of PVPs by 239

enabling them to learn from each other. Schick and 240

Schütze (2021b) shows that iPET with ALBERT 241

(Lan et al., 2020) as the underlying LM achieves 242

similar results on the SuperGLUE dataset as GTP- 243

3, given 32 examples. Additionally, iPET with 244

ALBERT only uses 223 million parameters, which 245

is a magnitude smaller than GTP-3. Even though 246

iPET mitigates the problems of choosing a single 247

cloze question formulation (pattern) by combining 248

multiple formulations, it still requires engineering 249

a set of suitable patterns. Furthermore, iPET re- 250

quires additional unlabeled data, which it uses in 251

the knowledge distillation stage. This can be hard 252

to acquire, where samples are pairs of text with 253

a label, constructed to test a model’s natural lan- 254

guage understanding abilities (e.g. SuperGLUE). 255

(Tam et al., 2021) propose ADAPET, which uses 256

no unlabeled data by providing more supervision 257

by modifying PET’s objective. ADAPET outper- 258

forms iPET on SuperGLUE without any unlabeled 259

data. 260

GTP and PET models use prompt-based 261

(pattern-based) prediction, but finding the right 262

prompt/pattern is an art. Gao et al. (2020) pro- 263

poses LM-BFF, which alleviates this problem by 264
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generating the prompt automatically given a few265

examples, outperforming or matching manually se-266

lected prompts. Gao et al. (2020) first finds a label267

word mapping given a template (pattern) and then268

generates a diverse set of templates from the fixed269

set of label words by using the T5 model (Raf-270

fel et al., 2020). Even though Gao et al. (2020)271

propose a way to automatically find prompts, it272

still needs an "initial" template (pattern) or label273

words, inducing a bias that could potentially re-274

strict the search space to a suboptimal one. Con-275

trary to iPET, LM-BFF uses demonstrations for276

each input by concatenating them for additional277

context. However, to combat the in-context se-278

lection problem (see GTP-3), LM-BFF randomly279

selects a single example from each class for each280

input iterative at a time to create multiple, mini-281

mal demonstration sets, making it more efficient282

for Few-Shot tasks than GTP-3. As the underlying283

Language model, they use RoBERTa large model,284

which is again a magnitude smaller than GTP-3,285

with K = 16 examples and then use prompt-based286

finetuning with demonstrations. Notice that the287

finetuning process is different than iPET, which288

does not use any demonstrations, and GPT-3’s in-289

context learning, which simply concatenates the290

input with demonstrations randomly drawn from291

the training set with no finetuning. Gao et al. (2020)292

evaluates on 8 tasks from the GLUE benchmark293

(Wang et al., 2019), SNLI (Bowman et al., 2015),294

and sentence classification tasks. Gao et al. (2020)295

show that their method of prompt-based finetun-296

ing outperforms standard finetuning (on K = 16297

examples), except for the CoLA task and outper-298

forms the GPT-3-style in-context learning. They299

also show that using demonstrations in context per-300

forms better than without any demonstrations in301

the context.302

2.2 Discussion: Reformulating Tasks for303

NLP Few-Shot Tasks304

Even though the models presented here, achieve305

impressive results with only a small amount of ex-306

amples, it is still lacking quite far behind SOTA307

models that finetune on big datasets with thousands308

of examples. These approaches also favor tasks,309

that can naturally be reformulated as "fill-in-the-310

blank” problems, such as sentiment classification311

(e.g. positive class: "A fun ride. All in all great."),312

leaving room for future work. Additionally, meth-313

ods require manual work to find a good reformula-314

tion for tasks. This problem is amplified in practi- 315

cal situations, where we want to deploy such sys- 316

tems since we need domain and model expertise to 317

find an optimal reformulation by hand for unseen 318

tasks. Even though Gao et al. (2020) try to mitigate 319

this problem by automatically find reformulations, 320

LM-BFF still needs an initial reformulation. Addi- 321

tionally, Language Models have a restricted input 322

size. Tasks that have too long input sequences can 323

not be properly solved. Future work could investi- 324

gate using Language Models that allow such long 325

input sequences, e.g. Longformer (Beltagy et al., 326

2020). Furthermore, these approaches finetune the 327

downstream tasks in isolation, not utilizing any 328

information from similar tasks. 329

3 Meta-Learning Algorithms 330

Additionally to the general-purpose language un- 331

derstanding properties of pre-trained language mod- 332

els, Meta-Learning algorithms try to induce another 333

inductive bias, which allows the model to quickly 334

adapt after only seeing a few examples. In com- 335

parison to the methods described in Section 1.2, 336

Meta-Learning explicitly take the Few-Shot sce- 337

nario into account and utilize information from 338

similar tasks. This is achieved by collecting many 339

training tasks, where each training task consists of a 340

training dataset Dtri = {(xtr,ytr)}, called support 341

set S, and a test set Dvali = {(xval,yval)}. The 342

idea is to then pre-train on them such that the final 343

model can generalize to new tasks rapidly, which 344

allows us to perform Few-Shot tasks. 345

We will discuss 2 popular forms of Meta- 346

learning for NLP tasks (Yin et al., 2020a): Metric- 347

based and Optimisation-based learning. 348

3.1 Metric-based Meta-Learning 349

The idea in metric-based Meta-Learning is to learn 350

a representation space through the training tasks, 351

which enables us to classify test instances correctly 352

by just comparing them to the K labeled examples 353

in this representation space. 354

Vinyals et al. (2017) proposes Matching Net- 355

works, which use two different embedding func- 356

tions, one for the training examples and one for the 357

test examples. The representation of one example 358

can change, depending on the given support set 359

Dtri for the task Ti. For a test example x̂, given its 360

support set S, we choose the class with the highest 361

aggregated similarity between class examples in 362

the support set and the test instance by calculat- 363
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ing the cosine similarity in the embedding space.364

Vinyals et al. (2017) evaluated Matching Networks365

on Few-Shot language modeling. Even though the366

approach found many applications in image classi-367

fication, it has not yet found any impressive results368

in NLP tasks. One of the reasons is that matching369

networks do not finetune on the support set during370

inference, making it hard to find a good general371

embedding space that would work for many NLP372

tasks since text is quite diverse. If Matching Net-373

works choose to finetune, it suffers from overfitting374

issues (Vinyals et al., 2017), not gaining much in375

performance.376

To enable finetuning during inference and not377

suffer from overfitting, Snell et al. (2017) pro-378

pose Prototypical Networks, which induce a sim-379

ple bias: There exists an embedding space where380

points that belong to one class, cluster around a381

single prototype representation. For that, they learn382

a non-linear mapping of the input into an embed-383

ding space using a neural network and calculate384

the class’ prototype as the mean of its support set385

in the embedding space. Finally, we can classify386

a new instance by finding the nearest class proto-387

type. In comparison to Matching Networks, they388

do not compare instances to each other but use the389

prototypes (class representation) calculated from390

the support set. Therefore, only in a Few-Shot sce-391

nario, the approaches differ. Additionally, Prototyp-392

ical Networks use Euclidean distance which outper-393

forms the proposed cosine similarity of Matching394

Networks (Snell et al., 2017). Prototypical net-395

works were first originally suggested for images396

in computer vision problems, however, the method397

was also applied to NLP tasks. Most applications398

use pre-trained word embeddings and instead of399

averaging to calculate the prototype class, they400

use more sophisticated methods, such as attention-401

based prototypes, reaching new SOTA on some402

benchmarks (Han et al., 2018; Gao et al., 2019; Hui403

et al., 2020; Deng et al., 2020) and also finding ap-404

plications in domain transfer (Bansal et al., 2019).405

However, as the metric plays an important role in406

gaining performance (Snell et al., 2017), Sung et al.407

(2018) introduces a learnable metric instead of a408

fixed metric, calling it Relation Networks. Yu409

et al. (2018) try to solve diverse Few-Shot text clas-410

sification by extending Prototype Networks with411

clustering similar training tasks, learning one met-412

ric for each, and then automatically determining413

the best weighted combination of those metrics for414

a newly seen Few-Shot task. 415

Matching, Prototypical and Relation Networks 416

in NLP are mostly restricted to test tasks that are 417

very similar to the training tasks, e.g. doing domain 418

transfer. When we have diverse NLP tasks, finding 419

an appropriate metric space becomes much harder. 420

Yu et al. (2018) try to solve diverse Few-Shot text 421

classification by extending Prototype Networks 422

with clustering similar training tasks, learning one 423

metric for each, and then automatically determin- 424

ing the best weighted combination of those metrics 425

for a newly seen Few-Shot task. They show sig- 426

nificant gains on Few-Shot sentiment classification 427

and dialog intent classification tasks, indicating 428

that clustering related tasks to handle diverse Few- 429

Shot NLP tasks, might be a good research direc- 430

tion to improve metric-based or even optimization- 431

based Meta-learning approaches for Few-Shot NLP 432

tasks. A closely related method to metric-based ap- 433

proaches is supervised contrastive learning (Gunel 434

et al., 2021) as both rely on capturing the similar- 435

ity between examples in one class and contrasting 436

them with examples in other classes. Instead of 437

the usual Cross-Entropy Loss of Language Mod- 438

els, which is prone to high variance, Gunel et al. 439

(2021) propose a loss function, consisting of cross- 440

entropy and their supervised contrastive learning 441

(SCL) term that pushes examples from the same 442

class closer and the examples from different classes 443

further apart. Gunel et al. (2021) obtain signifi- 444

cant improvements over a strong RoBERTa-Large 445

baseline on multiple datasets of the GLUE bench- 446

mark in few-shot learning settings. This method is 447

closely related to metric-based approaches as both 448

rely on capturing the similarity between examples 449

in one class and contrasting them with examples in 450

other classes. 451

3.2 Optimization-based Meta-Learning 452

In contrast to metric-based Meta-Learning, 453

optimization-based Meta-Learning approaches try 454

to learn a good set of parameter initialization, such 455

that the model can quickly converge to a minimum 456

in just a few gradient descent steps. 457

Finn et al. (2017) proposed the first optimization- 458

based model, called Model-Agnostic Meta- 459

Learning (MAML). Let θ denote the parame- 460

ter initialization of the model, φi the finetuned 461

model parameters and Li the loss function of 462

each task Ti. The idea is to first sample a (or 463

batch of) task Ti with the corresponding (disjoint) 464
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datasets Dtri ,Dvali . To train the model on Dtri ,465

gradient-finetune with respect to the loss function466

Li to obtain φi. We then can update the origi-467

nal initial model parameters θ using the "test" loss468

Li(φi,Dvali ) across sampled tasks469

θ ← θ − β∇θ
∑
i

Li(φi,Dvali ). (1)470

This enables MAML to find a good parameter ini-471

tialization that can quickly converge to a minimum,472

making it suitable for Few-Shot Learning. The473

model was used for Few-Shot text classification474

(Han et al., 2018; Obamuyide and Vlachos, 2019;475

Jiang et al., 2018; Bao et al., 2020), where each476

class is considered a task. Additionally, Jiang477

et al. (2018) introduces task-agnostic parameters478

and task-specific parameters to MAML, which they479

call ATAML, outperforming vanilla MAML on480

Few-Shot topic classification. MAML has also481

seen applications in Few-Shot domain adaption,482

e.g. Few-Shot dialogue system (Lin et al., 2019;483

Mi et al., 2019; Qian and Yu, 2019), where each do-484

main dialog is treated as a task. One problem that485

MAML has, is that it is both computationally and486

memory intensive since it needs to calculate second487

derivatives in equation (1) as we get a nested back-488

propagation, where second derivates may come489

up. First-Order MAML (FOMAML) and REP-490

TILE (Finn et al., 2017; Nichol et al., 2018) are491

methods which approximate the second derivative.492

One of the biggest challenges is to apply MAML493

to diverse tasks, as most applications are limited494

to similar train and test tasks, e.g. domain adap-495

tion tasks or to simulated classification datasets496

where each label is considered a task. Furthermore,497

even though the approach itself is model agnostic,498

meaning we can combine any model representation499

and any differentiable objective, the approach is500

restricted to tasks that have the same label space501

since to learn a good initialization, MAML requires502

sharing model parameters, including softmax clas-503

sification layers across tasks.504

To enable MAML to learn across diverse tasks505

with disjoint label spaces, Bansal et al. (2019) pro-506

poses LEOPARD, which uses a parameter genera-507

tor, which learns onDtri to generate task-dependent508

initial softmax classification parameters for any509

specific task. Furthermore, the approach transforms510

the text input into a feature representation by us-511

ing a (shared) BERT model across tasks. To find512

a good parameter initialization, LEOPARD uses a513

modified MAML-based adaptation method by dis- 514

tinction between task-specific parameters, which 515

are adapted per task, and task-agnostic parameters, 516

which are shared across tasks. This is similar to 517

Jiang et al. (2018). This allows for more efficient 518

adaptation. Since BERT has a high number of pa- 519

rameters, LEOPARD uses lower-layers of BERT as 520

task-agnostic parameters and higher-level layer and 521

the softmax generating function as task-specific pa- 522

rameters. Since we already used Dtri to generate 523

task-depended initial softmax classification param- 524

eters, we use subsequent batches for adaption. On 525

the contrary to vanilla MAML, LEOPARD can 526

handle test tasks that are notably different from 527

the training tasks. They evaluate LEOPARD using 528

target tasks that were not seen during training and 529

evaluate on their entire test set after finetuning on 530

K examples per label from the corresponding train- 531

ing set. The target tasks were selected such that 532

they differ significantly from the training task and 533

have a varying number of labels. They show that on 534

average LEOPARD performs significantly better 535

than the chosen baselines, BERT-base model (De- 536

vlin et al., 2019), Multi-task BERT (comparable to 537

Liu et al. (2019)) and a Prototypical Network (Snell 538

et al., 2017) that uses BERT-base as the underlying 539

neural model. With that experiment, they show that 540

LEOPARD can leverage Meta-learning to learn 541

a more general-purpose parameter initialization 542

that can then be used to solve completely unseen 543

new tasks with just a few examples. Furthermore, 544

Bansal et al. (2019) evaluate Few-Shot Domain- 545

transfer, showing that LEOPARD performs on par 546

or better than the baselines. They also show that 547

prototypical networks give competitive results on 548

domain-transfer tasks. One disadvantage of LEOP- 549

ARD is that it requires labeled data from many 550

different tasks, for training and also hyperparame- 551

ter tuning. Additionally, it suffers from overfitting 552

to the training task-distribution (Bansal et al., 2019, 553

2020) (Meta-overfitting), leaving room for a more 554

efficient adaption to diverse tasks. 555

3.3 Discussion: Meta-Learning for NLP 556

Few-Shot Tasks 557

One of the main challenges in Meta-Learning (in 558

general) is to create training tasks that enable Meta- 559

learning algorithms to find a good initialization set 560

to solve the target task (Vinyals et al., 2017). As 561

previously mentioned, many applications create 562

training tasks from a fixed task dataset, where we 563
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have many labels, by subsampling from the set of564

labels. While it enables to generalize to unseen565

labels, this can also lead to overfitting to the train-566

ing task distribution, making it hard to generalize567

to unseen tasks (Yin et al., 2020a). Furthermore,568

one of the reasons why most Meta-learning algo-569

rithms were first proposed in image classification570

problems is because they have big labeled sets with571

a large number of labels. In NLP tasks, however,572

they are often restricted to a small number of la-573

bels, e.g. sentiment classification has only a few574

discrete labels. To remedy this, Bansal et al. (2020)575

propose a self-supervised approach to generate a576

Meta-learning task distribution from an unlabeled577

text by masking words from a specified vocabu-578

lary (or subsets of it) and posing it as a multi-class579

classification. Combining the generated tasks with580

the available supervised tasks can improve Meta-581

learning algorithms, such as LEOPARD (Bansal582

et al., 2020). However, as these generated tasks583

are only (masked language) classification tasks,584

this can lead to a narrow training-task distribution.585

Additionally, most of the research only explores586

classification problems, leaving room for future587

work to expand into more diverse problem struc-588

tures and to find more suitable ways to generate589

diverse Meta-learning tasks.590

One major obstacle for Meta-learning ap-591

proaches is to solve diverse NLP Few-Shot tasks.592

Meta-Learning approaches may work well for sim-593

ulated datasets, where we just subsample labels594

from one single task dataset and define them as595

training tasks because the underlying task does not596

change in this situation, e.g. the model was “pre-597

trained” to solve translation tasks. However, if you598

want to test on a truly unseen task, the model has599

to first learn the underlying task from a few given600

examples. Jiang et al. (2018); Bansal et al. (2019)601

mitigate this problem by introducing task-specific602

parameters and task-agnostic parameters for more603

efficient adaption. Another interesting approach604

for future work could be to combine Meta learning605

with additional task information, e.g. task descrip-606

tions, to solve new diverse tasks (approaches in607

Section 2 do this).608

4 K-Shot Cross-Lingual Transfer with609

Multilingual Language Models610

This section will deal with K-Shot Cross-Lingual611

Transfer as a use-case of Few-Shot Learning.612

Achieving SOTA on (monolingual) NLP tasks is613

usually done by using transformers, pre-trained on 614

language modeling objectives in a semi-supervised 615

fashion, and then finetuning on a specific NLP task, 616

which in return need a lot of labeled training data. 617

Those are available in common languages, such 618

as the English language, however, in low resource 619

languages models fail to generalize well. The idea 620

is to transfer the knowledge about a task from a 621

high resource language to another low resource 622

language, called cross-lingual transfer (CLT). 623

To achieve CLT between tasks from different 624

languages, one has to induce a shared repre- 625

sentation space between the source and target 626

language. Previous SOTA methods used to 627

induce continuous cross-lingual representation 628

spaces by using cross-lingual word embeddings 629

(Mikolov et al., 2013b; Glavaš et al., 2019) and 630

sentence embeddings (Artetxe and Schwenk, 631

2019). However, with transformers getting popular, 632

this survey will focus on inducing multilingual 633

word embeddings with transformers. 634

635

4.1 Zero-Shot Cross-Lingual Transfer 636

One way to try to combat sparsely labeled train- 637

ing data in one language is by pretraining trans- 638

former models on multiple languages and auto- 639

matically induce a multilingual word embedding. 640

This idea gave rise to powerful massively multi- 641

lingual transformers, such as mBert, XLM-R, and 642

the recently introduced mT5 (Devlin et al., 2019; 643

Conneau et al., 2020; Xue et al., 2021). These archi- 644

tectures can encode text from any of the languages 645

seen in pretraining and allows for a very straightfor- 646

ward approach to Zero-Shot cross-lingual model 647

transfer: Finetune the model using task-specific 648

supervised training data from one high resource 649

language (source-training) and predict on other 650

languages by feeding the target language text into 651

the finetuned model. Pires et al. (2019) show ef- 652

fective results of Zero-Shot cross-lingual transfer 653

with mBERT on POS tagging and NER for related 654

languages. Furthermore, Wu et al. (2020); K et al. 655

(2020) show the cross-lingual potential of mBERT 656

by extending the analysis. Nevertheless, the litera- 657

ture mostly showed good results in languages that 658

were from the same language family or that had 659

a large corpus in pretraining, languages such as 660

German, Spanish or French. This concern is raised 661

by multiple sources (Lauscher et al., 2020; Wu and 662

Dredze, 2020), which show that the performance 663
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drops huge for distant target languages and tar-664

get languages that have small pre-training corpus.665

Furthermore, Lauscher et al. (2020) empirically666

show that for massively multilingual transform-667

ers, pre-training corpora sizes affect the Zero-Shot668

performance in higher-level language understand-669

ing tasks (e.g. NLI and QA), whereas the results670

in lower-level language understanding tasks are671

more impacted by typological language proxim-672

ity. To summarize, Zero-Shot cross-lingual transfer673

with source training is effective for languages that674

are linguistically similar and languages that have a675

great amount of data for pre-training. However, this676

scenario is almost always never the case for low677

resource languages, where cross-lingual transfer is678

needed. The next section will investigate Few-Shot679

transfer to mitigate the transfer gap.680

4.2 Few-Shot Cross-Lingual Transfer681

To improve upon the results of Zero-Shot CLT,682

which only uses source training, we now addi-683

tionally exploit the K task-specific examples in684

the target language (Few-Shot cross-lingual sce-685

nario) by further finetuning on those K examples686

(target-adapting). Lauscher et al. (2020) experi-687

ment with Few-Shot CLT on lower-level structured688

prediction tasks (POS tagging, dependency parsing,689

and NER) and higher-level language understanding690

tasks (NLI and QA) with varying numbers of K691

examples. They show that distant languages gain692

much more in performance from Few-Shot data693

than closely related languages. Hedderich et al.694

(2020) use Few-Shot CLT on NER task on genuine695

low-resource languages like Hausa and isiXhosa,696

also showing significant improvements by finetun-697

ing on the few examples. Zhao et al. (2020) applied698

Few-Shot CLT with mBERT on POS, NER, and699

sequence classification, observing the same phe-700

nomenon. In summary, additional finetuning on701

the given few examples from the target language702

can significantly improve performances on distant703

languages - Exactly where Zero-Shot CLT fails.704

Since we only have to finetune on a small set of705

examples, this additional finetuning is not compu-706

tationally expensive but shows promising results.707

As we only discussed "naively" finetuning for708

target adaption, one could further investigate how709

to exploit the given examples efficiently. Zhao et al.710

(2020) investigated freezing parameters during fine-711

tuning to mitigate the overfitting problem, however,712

experiments show no significant improvements in713

performance. To use the few given examples more 714

efficiently, Nooralahzadeh et al. (2020) use MAML 715

to further find optimal initialization parameters (af- 716

ter source training), which then can be used for 717

either Zero-Shot or again finetuning in a Few-Shot 718

setup. However, the method requires many train- 719

ing tasks in low-resource languages. Future work 720

could focus on using Meta-Learning further. 721

One downside of all Few-Shot CLT approaches 722

is that you need labeled data in the low resource 723

target language, which is typically hard to acquire. 724

It may become costly to annotate data for minor 725

languages, however as Lauscher et al. (2020) show, 726

even 10 annotated instances can give substantial 727

performance improvement. This begs the question 728

if annotating data is more cost-efficient in the long 729

run than using GPU hours. 730

5 Conclusion and Discussion 731

We studied two methods to tackle Few-Shot tasks 732

in NLP: Using pre-trained Language Models and 733

Meta-learning. Even though Meta-Learning pro- 734

vides diverse applications as most methods are task 735

and model agnostic, they struggle to solve unseen 736

diverse NLP tasks. Future work should investi- 737

gate how to improve generalization to new tasks. 738

Pre-trained language models can be effective by 739

reformulating NLP tasks as language model prob- 740

lems, enabling Few-Shot abilities. However these 741

methods require manual work to find a good re- 742

formulation and they favor tasks, that can be nat- 743

urally reformulated as a "fill-in-the-blank" task. 744

We then discussed a use-case of Few-Shot Learn- 745

ing: Few-Shot CLT. In CLT, we have the chance 746

to first finetune in a rich-resource language, and 747

then transfer the knowledge to a low-resource lan- 748

guage. Using more sophisticated methods to train 749

on high resource languages, e.g. Meta-Learning 750

(Nooralahzadeh et al., 2020), can improve perfor- 751

mance and is a promising research direction. Nev- 752

ertheless, most methods need labeled examples in 753

low resource languages, making them expensive 754

to obtain. As previously discussed in Section 1.3, 755

almost all Few-Shot techniques have high variance. 756

Therefore, we identify the necessity of standardiza- 757

tion of Few-Shot datasets. As a final word, there 758

are other approaches to Few-Shot Learning in NLP 759

that was not discussed in this survey, e.g. unify- 760

ing NLP tasks formats (McCann et al., 2018b; Yin 761

et al., 2020b; Raffel et al., 2020; Khashabi et al., 762

2020). 763
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