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Abstract

Natural Language Processing (NLP) tasks are
data-hungry and when the situation arises,
where data is scarce, NLP models often fail
to carry out reliable generalizations. Humans
can, however, generalize only by seeing a few
labeled examples on a specific task. Motivated
by this, the rise in popularity in techniques that
can generalize to new tasks containing only a
few samples, called Few-Shot Learning, was
inevitable. This survey discusses pre-trained
Language Models and Meta-Learning for Few-
Shot Training and Transfer in NLP, critically
assess their application and identifies future
work. Furthermore, we study the application
of Few-Shot approaches in a cross-lingual set-
ting.

1 Introduction

Deep learning methods defined NLP in recent
years, achieving impressive performance when suf-
ficient amounts of labeled data are available. How-
ever, from a practical view, in many tasks, a large
scale dataset is not available, e.g. low-resource lan-
guages, and annotating new labeled data labels is
expensive and time-consuming (Fort, 2016), leav-
ing us with only building more efficient algorithms
as conventional deep learning methods fail in this
low data regime (Yogatama et al., 2019). Humans,
on the other hand, only need a few demonstrations
to learn new language tasks. Motivated by this,
Few-Shot Learning tries to solve all those issues by
learning just from a few labeled samples.

1.1 Few-Shot Scenario

Few-Shot Learning (FSL) is the ability to learn
tasks with limited examples. Most existing FSL
problems are supervised learning problems, which
is our focus in this survey. In an (/NV-way-) K -shot
classification problem, we are only given K labeled
examples per class, where the number of classes
is V. K-shot regression estimates a regression
function given only K input-output example pairs.

To understand the challenges and approaches to
Few-Shot Learning, we first analyze existing State-
of-the-Art (SOTA) supervised approaches for NLP
tasks.

1.2 Inducing Prior Knowledge

In a normal supervised setting, we would train our
model on hundreds of thousands to millions of in-
put—output pairs, which found success in numerous
fields. However studies show that in NLP tasks,
this paradigm of supervised learning does not gen-
eralize well outside the training data characteristics
(Jia and Liang, 2017; Belinkov and Bisk, 2018),
even when provided with enormous training data.
The models are sensitive to noise, adversarial ex-
amples and are prone to overfitting. The reason
is that language is complex and diverse and when
conditions change, e.g. a new domain, the model
is not able to adapt. Without any modification to
the supervised approach, our Few-Shot Learning
scenario will even amplify the poor generalization.

The most prominent way to help generaliza-
tion is to induce an inductive bias by using trans-
fer learning (Ruder, 2019), especially using pre-
trained representations. In the last years, NLP saw
the rise of pre-trained language representations for
downstream tasks, achieving new SOTA on many
NLP tasks. First, single-layer representations using
word embedding vectors (Mikolov et al., 2013a)
followed by contextualized word embeddings (Dai
and Le, 2015; McCann et al., 2018a; Peters et al.,
2018) were proposed, which were both simply
fed into a task-specific architecture. With the rise
of transformer language models (Vaswani et al.,
2017), which enable direct finetuning of the whole
architecture, there was no need for task-specific
architectures anymore (Devlin et al., 2019). This
was a breakthrough for NLP as many SOTA on
NLP tasks were achieved by finetuning on task-
specific samples using transformers, that are sim-
ply pre-trained on a language modeling objective
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Figure 1: F}j scores on SQuAD as a function of the
number of training examples (log scale) (Yogatama
et al., 2019). BERT gpervisea and ELMo,gupervisea de-
note BERT and ELMo models that are pre-trained on
other similar tasks, BERT . ..ch denotes a Transformer
with a similar architecture to BERT that is trained from
scratch.

in a semi-supervised fashion, inducing contextual-
ized word embeddings. Clark et al. (2019) show
that a pre-trained transformer model, like BERT,
obtain knowledge about characteristics of the lan-
guage, e.g. syntax and semantics as well as certain
facts about the world, in short, have some general-
purpose language understanding capacity, which
can explain the generalization ability on a finetuned
task.

1.3 Few-Shot Learning Challenges

One could naively apply the same strategy as in
a normal supervised setting for our Few-Shot sce-
nario: Finetune a pre-trained transformer model
on the few labeled examples. Even though the pre-
training helps the model to generalize on a new
task, a sufficient amount of labeled data (Yogatama
etal.,2019) is still needed in order to get reasonable
results. The Figure 1 shows that in Few-Shot sce-
narios (i.e. < 1000 examples), all models lack far
behind the fully trained variants, indicating sam-
ple inefficiency of the transformer model BERT.
Additionally, the BERT i¢4tch does not learn much
without inducing an inductive bias via pre-training,
showing the importance of the procedure. The Fig-
ure 1 also shows that, pre-training (sequentially)
on similar tasks can help in a Few-Shot scenario,
however, the sample inefficiency remains. Similar
to this, Multi-Task Learning leverages information
contained in multiple related tasks to help improve
the generalization performance on all tasks (Zhang
and Yang, 2021). Nonetheless, the method favors
tasks with significantly more data, making it unsuit-
able for Few-Shot tasks. Another problem of big

transformers is that they suffer from high variance
(Phang et al., 2019; Dodge et al., 2020). This is
amplified in a Few-Shot scenario, where Language
Models only finetune on a few samples (Zhang
et al., 2021; Zhao et al., 2020). Changing the set
of training examples can result in significant per-
formance differences. Therefore, it is essential to
use the same set or average between multiple equal
sets when comparing Few-Shot approaches, mak-
ing it hard to compare different approaches. (Zhang
et al., 2021) provide alternative practices to reduce
instability.

The question remains, how a transformer model
can effectively leverage the few given examples
without suffering from high variance. Section
2 describes a method that tries to exploit the in-
duced bias of pre-trained language models explic-
itly through using the model directly by reformulat-
ing the task as a language model problem. Driven
by the results of pre-training sequentially on similar
tasks, see Figure 1, Section 3 will analyze Meta-
Learning Approaches, which also "pre-train" on
similar tasks to induce an inductive bias with the
goal to use the model in a Few-Shot scenario. Sec-
tion 4 will cover the use-case of K-Shot Cross-
Lingual Transfer. Finally, Section 5 will conclude
this survey.

2 Reformulating Tasks as Language
Modelling Problems

As pre-trained language models possess some gen-
eral language purpose understanding, the idea is
to solve Few-Shot Learning tasks through directly
using the obtained linguistic knowledge by refor-
mulating tasks as language modeling problems and
then predicting labels as "fill-in-the-blank" tasks,
sharing the same format as pre-training LMs.

2.1 Approaches

Brown et al. (2020) introduces GPT-3, which es-
sentially uses the same model as GTP-2 (Radford
et al., 2019), but scales the data, training time,
and model to 175 billion parameters. On the con-
trary to standard finetuning that condition on the
task on the algorithmic level p(output|input), the
idea of GPT series is to condition the model on
the selected task p(output|input, task), by induc-
ing the task into the text sequence with a task
description. A reading comprehension training
example could be formulated as (answer the
question, document question, answer).



To create a training set, they scraped web pages,
but with a focus on document quality. The hope is
that task formulations occur naturally in the dataset.
Brown et al. (2020) explore different settings for
learning within context, which means that during
inference, the model is given a prompt, which con-
sists of a task description and K examples of con-
text and completion, which they call model prim-
ing. Then to make predictions, one final context is
given, but the model has to fill in the completion.
One important note is, that the model does not do
any weight updates during inference, even after
seeing the K examples, leaving room for more op-
timization. Additionally, K is upper bounded by
the context windows size (n., = 2048), meaning
that typically the window fits around 10 to 100 ex-
amples. With this strategy of using the pre-trained
language model directly, GTP-3 shows impressive
Few-Shot capabilities across diverse tasks, surpass-
ing some strong finetuned models baselines, such
as tasks in the SuperGLUE benchmarks (Wang
et al., 2020) by only giving 32 labeled examples.
However, for finding the right prompt, a hold out
set is necessary, which then in return needs more
examples. As we are in a Few-Shot scenario, this
makes it difficult to obtain a sufficiently large hold
out set. As GTP-3 naively concatenates the K
randomly selected examples (as the model’s input
size is bounded) with the input to create their in-
context learning, the model does not make sure
that the most informative demonstration are prior-
itized. However, prioritizing is important, since
the number of usable demonstrations is bounded
by the model’s input size. We will call this prob-
lem in-context selection problem. Furthermore,
as GPT-3 uses an autoregressive language model,
experiments do not include any bidirectional archi-
tectures, even though Raffel et al. (2020) indicate
that (finetuned) models benefit from such bidirec-
tionality to solve NLP tasks. Finally, as GPT-3
has 175 billion parameters, performing inference
is expensive and makes it impracticable for many
applications.

Schick and Schiitze (2021b) introduce iPET, a
task-agnostic method for Few-Shot Learning that
can perform on par with the GTP-3 model on the
SuperGLUE dataset using a 785 times smaller Lan-
guage Model, making the approach more "greener"
and practical. Instead of providing prompts, as
in the GPT models, iPET uses pattern-exploiting
training (PET) (Schick and Schiitze, 2021a), which

reformulates tasks as cloze questions (no additional
context samples provided) with regular gradient-
based finetuning. Addititionally, the model utilizes
gradient steps after seeing the K examples. For
that, PET requires a pattern-verbalizer pairs (PVPs)
p = (P,v), which maps the input x of a task to
a cloze question formulation. They call this a pat-
tern P. Then for each possible output y of the
task, PET maps it to a single token, representing its
task-specific meaning in the pattern, called verbal-
izer v. Now, given a pre-trained masked language
model, we only have to check the probabilities of
the mapped output v(y) being the correct token at
the masked position. To generate good PVPs on a
small development set of held out tasks, PET uses
a combination of 3 PVPs per pattern for which a
separate pre-trained MLLM is first finetuned on the
given (small) training set and then used to anno-
tate unlabeled examples. Finally, the soft-labeled
dataset is used to finetune a single sequence clas-
sifier, which is closely related to knowledge distil-
lation (Hinton et al., 2015). However, PET only
works when the answer is a single token. Schick
and Schiitze (2021b) proposes iPET, which modi-
fies PET to handle more than just one token during
predictions and refines the generation of PVPs by
enabling them to learn from each other. Schick and
Schiitze (2021b) shows that iPET with ALBERT
(Lan et al., 2020) as the underlying LM achieves
similar results on the SuperGLUE dataset as GTP-
3, given 32 examples. Additionally, iPET with
ALBERT only uses 223 million parameters, which
is a magnitude smaller than GTP-3. Even though
iPET mitigates the problems of choosing a single
cloze question formulation (pattern) by combining
multiple formulations, it still requires engineering
a set of suitable patterns. Furthermore, iPET re-
quires additional unlabeled data, which it uses in
the knowledge distillation stage. This can be hard
to acquire, where samples are pairs of text with
a label, constructed to test a model’s natural lan-
guage understanding abilities (e.g. SuperGLUE).
(Tam et al., 2021) propose ADAPET, which uses
no unlabeled data by providing more supervision
by modifying PET’s objective. ADAPET outper-
forms iPET on SuperGLUE without any unlabeled
data.

GTP and PET models use prompt-based
(pattern-based) prediction, but finding the right
prompt/pattern is an art. Gao et al. (2020) pro-
poses LM-BFF, which alleviates this problem by



generating the prompt automatically given a few
examples, outperforming or matching manually se-
lected prompts. Gao et al. (2020) first finds a label
word mapping given a template (pattern) and then
generates a diverse set of templates from the fixed
set of label words by using the TS model (Raf-
fel et al., 2020). Even though Gao et al. (2020)
propose a way to automatically find prompts, it
still needs an "initial" template (pattern) or label
words, inducing a bias that could potentially re-
strict the search space to a suboptimal one. Con-
trary to iPET, LM-BFF uses demonstrations for
each input by concatenating them for additional
context. However, to combat the in-context se-
lection problem (see GTP-3), LM-BFF randomly
selects a single example from each class for each
input iterative at a time to create multiple, mini-
mal demonstration sets, making it more efficient
for Few-Shot tasks than GTP-3. As the underlying
Language model, they use RoBERTa large model,
which is again a magnitude smaller than GTP-3,
with K = 16 examples and then use prompt-based
finetuning with demonstrations. Notice that the
finetuning process is different than iPET, which
does not use any demonstrations, and GPT-3’s in-
context learning, which simply concatenates the
input with demonstrations randomly drawn from
the training set with no finetuning. Gao et al. (2020)
evaluates on 8 tasks from the GLUE benchmark
(Wang et al., 2019), SNLI (Bowman et al., 2015),
and sentence classification tasks. Gao et al. (2020)
show that their method of prompt-based finetun-
ing outperforms standard finetuning (on K = 16
examples), except for the CoL A task and outper-
forms the GPT-3-style in-context learning. They
also show that using demonstrations in context per-
forms better than without any demonstrations in
the context.

2.2 Discussion: Reformulating Tasks for
NLP Few-Shot Tasks

Even though the models presented here, achieve
impressive results with only a small amount of ex-
amples, it is still lacking quite far behind SOTA
models that finetune on big datasets with thousands
of examples. These approaches also favor tasks,
that can naturally be reformulated as "fill-in-the-
blank” problems, such as sentiment classification
(e.g. positive class: "A fun ride. All in all great."),
leaving room for future work. Additionally, meth-
ods require manual work to find a good reformula-

tion for tasks. This problem is amplified in practi-
cal situations, where we want to deploy such sys-
tems since we need domain and model expertise to
find an optimal reformulation by hand for unseen
tasks. Even though Gao et al. (2020) try to mitigate
this problem by automatically find reformulations,
LM-BFF still needs an initial reformulation. Addi-
tionally, Language Models have a restricted input
size. Tasks that have too long input sequences can
not be properly solved. Future work could investi-
gate using Language Models that allow such long
input sequences, e.g. Longformer (Beltagy et al.,
2020). Furthermore, these approaches finetune the
downstream tasks in isolation, not utilizing any
information from similar tasks.

3 Meta-Learning Algorithms

Additionally to the general-purpose language un-
derstanding properties of pre-trained language mod-
els, Meta-Learning algorithms try to induce another
inductive bias, which allows the model to quickly
adapt after only seeing a few examples. In com-
parison to the methods described in Section 1.2,
Meta-Learning explicitly take the Few-Shot sce-
nario into account and utilize information from
similar tasks. This is achieved by collecting many
training tasks, where each training task consists of a
training dataset D" = { (@, yir) }, called support
set S, and a test set DY = {(Zyal, Yvar)}. The
idea is to then pre-train on them such that the final
model can generalize to new tasks rapidly, which
allows us to perform Few-Shot tasks.

We will discuss 2 popular forms of Meta-
learning for NLP tasks (Yin et al., 2020a): Metric-
based and Optimisation-based learning.

3.1 Metric-based Meta-Learning

The idea in metric-based Meta-Learning is to learn
a representation space through the training tasks,
which enables us to classify test instances correctly
by just comparing them to the K labeled examples
in this representation space.

Vinyals et al. (2017) proposes Matching Net-
works, which use two different embedding func-
tions, one for the training examples and one for the
test examples. The representation of one example
can change, depending on the given support set
D! for the task 7;. For a test example 2, given its
support set .S, we choose the class with the highest
aggregated similarity between class examples in
the support set and the test instance by calculat-



ing the cosine similarity in the embedding space.
Vinyals et al. (2017) evaluated Matching Networks
on Few-Shot language modeling. Even though the
approach found many applications in image classi-
fication, it has not yet found any impressive results
in NLP tasks. One of the reasons is that matching
networks do not finetune on the support set during
inference, making it hard to find a good general
embedding space that would work for many NLP
tasks since text is quite diverse. If Matching Net-
works choose to finetune, it suffers from overfitting
issues (Vinyals et al., 2017), not gaining much in
performance.

To enable finetuning during inference and not
suffer from overfitting, Snell et al. (2017) pro-
pose Prototypical Networks, which induce a sim-
ple bias: There exists an embedding space where
points that belong to one class, cluster around a
single prototype representation. For that, they learn
a non-linear mapping of the input into an embed-
ding space using a neural network and calculate
the class’ prototype as the mean of its support set
in the embedding space. Finally, we can classify
a new instance by finding the nearest class proto-
type. In comparison to Matching Networks, they
do not compare instances to each other but use the
prototypes (class representation) calculated from
the support set. Therefore, only in a Few-Shot sce-
nario, the approaches differ. Additionally, Prototyp-
ical Networks use Euclidean distance which outper-
forms the proposed cosine similarity of Matching
Networks (Snell et al., 2017). Prototypical net-
works were first originally suggested for images
in computer vision problems, however, the method
was also applied to NLP tasks. Most applications
use pre-trained word embeddings and instead of
averaging to calculate the prototype class, they
use more sophisticated methods, such as attention-
based prototypes, reaching new SOTA on some
benchmarks (Han et al., 2018; Gao et al., 2019; Hui
et al., 2020; Deng et al., 2020) and also finding ap-
plications in domain transfer (Bansal et al., 2019).
However, as the metric plays an important role in
gaining performance (Snell et al., 2017), Sung et al.
(2018) introduces a learnable metric instead of a
fixed metric, calling it Relation Networks. Yu
et al. (2018) try to solve diverse Few-Shot text clas-
sification by extending Prototype Networks with
clustering similar training tasks, learning one met-
ric for each, and then automatically determining
the best weighted combination of those metrics for

a newly seen Few-Shot task.

Matching, Prototypical and Relation Networks
in NLP are mostly restricted to test tasks that are
very similar to the training tasks, e.g. doing domain
transfer. When we have diverse NLP tasks, finding
an appropriate metric space becomes much harder.
Yu et al. (2018) try to solve diverse Few-Shot text
classification by extending Prototype Networks
with clustering similar training tasks, learning one
metric for each, and then automatically determin-
ing the best weighted combination of those metrics
for a newly seen Few-Shot task. They show sig-
nificant gains on Few-Shot sentiment classification
and dialog intent classification tasks, indicating
that clustering related tasks to handle diverse Few-
Shot NLP tasks, might be a good research direc-
tion to improve metric-based or even optimization-
based Meta-learning approaches for Few-Shot NLP
tasks. A closely related method to metric-based ap-
proaches is supervised contrastive learning (Gunel
et al., 2021) as both rely on capturing the similar-
ity between examples in one class and contrasting
them with examples in other classes. Instead of
the usual Cross-Entropy Loss of Language Mod-
els, which is prone to high variance, Gunel et al.
(2021) propose a loss function, consisting of cross-
entropy and their supervised contrastive learning
(SCL) term that pushes examples from the same
class closer and the examples from different classes
further apart. Gunel et al. (2021) obtain signifi-
cant improvements over a strong ROBERTa-Large
baseline on multiple datasets of the GLUE bench-
mark in few-shot learning settings. This method is
closely related to metric-based approaches as both
rely on capturing the similarity between examples
in one class and contrasting them with examples in
other classes.

3.2 Optimization-based Meta-Learning

In contrast to metric-based Meta-Learning,
optimization-based Meta-Learning approaches try
to learn a good set of parameter initialization, such
that the model can quickly converge to a minimum
in just a few gradient descent steps.

Finn et al. (2017) proposed the first optimization-
based model, called Model-Agnostic Meta-
Learning (MAML). Let 6 denote the parame-
ter initialization of the model, ¢; the finetuned
model parameters and £; the loss function of
each task 7;. The idea is to first sample a (or
batch of) task 7; with the corresponding (disjoint)



datasets D", DY, To train the model on D!",
gradient-finetune with respect to the loss function
L; to obtain ¢;. We then can update the origi-
nal initial model parameters 6 using the "test" loss
L;(¢i, DY) across sampled tasks

0 0—BVy> Li(¢ D). (1)

This enables MAML to find a good parameter ini-
tialization that can quickly converge to a minimum,
making it suitable for Few-Shot Learning. The
model was used for Few-Shot text classification
(Han et al., 2018; Obamuyide and Vlachos, 2019;
Jiang et al., 2018; Bao et al., 2020), where each
class is considered a task. Additionally, Jiang
et al. (2018) introduces task-agnostic parameters
and task-specific parameters to MAML, which they
call ATAML, outperforming vanilla MAML on
Few-Shot topic classification. MAML has also
seen applications in Few-Shot domain adaption,
e.g. Few-Shot dialogue system (Lin et al., 2019;
Mi et al., 2019; Qian and Yu, 2019), where each do-
main dialog is treated as a task. One problem that
MAML has, is that it is both computationally and
memory intensive since it needs to calculate second
derivatives in equation (1) as we get a nested back-
propagation, where second derivates may come
up. First-Order MAML (FOMAML) and REP-
TILE (Finn et al., 2017; Nichol et al., 2018) are
methods which approximate the second derivative.
One of the biggest challenges is to apply MAML
to diverse tasks, as most applications are limited
to similar train and test tasks, e.g. domain adap-
tion tasks or to simulated classification datasets
where each label is considered a task. Furthermore,
even though the approach itself is model agnostic,
meaning we can combine any model representation
and any differentiable objective, the approach is
restricted to tasks that have the same label space
since to learn a good initialization, MAML requires
sharing model parameters, including softmax clas-
sification layers across tasks.

To enable MAML to learn across diverse tasks
with disjoint label spaces, Bansal et al. (2019) pro-
poses LEOPARD, which uses a parameter genera-
tor, which learns on D" to generate task-dependent
initial softmax classification parameters for any
specific task. Furthermore, the approach transforms
the text input into a feature representation by us-
ing a (shared) BERT model across tasks. To find
a good parameter initialization, LEOPARD uses a

modified MAML-based adaptation method by dis-
tinction between task-specific parameters, which
are adapted per task, and task-agnostic parameters,
which are shared across tasks. This is similar to
Jiang et al. (2018). This allows for more efficient
adaptation. Since BERT has a high number of pa-
rameters, LEOPARD uses lower-layers of BERT as
task-agnostic parameters and higher-level layer and
the softmax generating function as task-specific pa-
rameters. Since we already used D!" to generate
task-depended initial softmax classification param-
eters, we use subsequent batches for adaption. On
the contrary to vanilla MAML, LEOPARD can
handle test tasks that are notably different from
the training tasks. They evaluate LEOPARD using
target tasks that were not seen during training and
evaluate on their entire test set after finetuning on
K examples per label from the corresponding train-
ing set. The target tasks were selected such that
they differ significantly from the training task and
have a varying number of labels. They show that on
average LEOPARD performs significantly better
than the chosen baselines, BERT-base model (De-
vlin et al., 2019), Multi-task BERT (comparable to
Liu et al. (2019)) and a Prototypical Network (Snell
et al., 2017) that uses BERT-base as the underlying
neural model. With that experiment, they show that
LEOPARD can leverage Meta-learning to learn
a more general-purpose parameter initialization
that can then be used to solve completely unseen
new tasks with just a few examples. Furthermore,
Bansal et al. (2019) evaluate Few-Shot Domain-
transfer, showing that LEOPARD performs on par
or better than the baselines. They also show that
prototypical networks give competitive results on
domain-transfer tasks. One disadvantage of LEOP-
ARD is that it requires labeled data from many
different tasks, for training and also hyperparame-
ter tuning. Additionally, it suffers from overfitting
to the training task-distribution (Bansal et al., 2019,
2020) (Meta-overfitting), leaving room for a more
efficient adaption to diverse tasks.

3.3 Discussion: Meta-Learning for NLP
Few-Shot Tasks

One of the main challenges in Meta-Learning (in
general) is to create training tasks that enable Meta-
learning algorithms to find a good initialization set
to solve the target task (Vinyals et al., 2017). As
previously mentioned, many applications create
training tasks from a fixed task dataset, where we



have many labels, by subsampling from the set of
labels. While it enables to generalize to unseen
labels, this can also lead to overfitting to the train-
ing task distribution, making it hard to generalize
to unseen tasks (Yin et al., 2020a). Furthermore,
one of the reasons why most Meta-learning algo-
rithms were first proposed in image classification
problems is because they have big labeled sets with
a large number of labels. In NLP tasks, however,
they are often restricted to a small number of la-
bels, e.g. sentiment classification has only a few
discrete labels. To remedy this, Bansal et al. (2020)
propose a self-supervised approach to generate a
Meta-learning task distribution from an unlabeled
text by masking words from a specified vocabu-
lary (or subsets of it) and posing it as a multi-class
classification. Combining the generated tasks with
the available supervised tasks can improve Meta-
learning algorithms, such as LEOPARD (Bansal
et al., 2020). However, as these generated tasks
are only (masked language) classification tasks,
this can lead to a narrow training-task distribution.
Additionally, most of the research only explores
classification problems, leaving room for future
work to expand into more diverse problem struc-
tures and to find more suitable ways to generate
diverse Meta-learning tasks.

One major obstacle for Meta-learning ap-
proaches is to solve diverse NLP Few-Shot tasks.
Meta-Learning approaches may work well for sim-
ulated datasets, where we just subsample labels
from one single task dataset and define them as
training tasks because the underlying task does not
change in this situation, e.g. the model was “pre-
trained” to solve translation tasks. However, if you
want to test on a truly unseen task, the model has
to first learn the underlying task from a few given
examples. Jiang et al. (2018); Bansal et al. (2019)
mitigate this problem by introducing task-specific
parameters and task-agnostic parameters for more
efficient adaption. Another interesting approach
for future work could be to combine Meta learning
with additional task information, e.g. task descrip-
tions, to solve new diverse tasks (approaches in
Section 2 do this).

4 K-Shot Cross-Lingual Transfer with
Multilingual Language Models

This section will deal with K-Shot Cross-Lingual
Transfer as a use-case of Few-Shot Learning.
Achieving SOTA on (monolingual) NLP tasks is

usually done by using transformers, pre-trained on
language modeling objectives in a semi-supervised
fashion, and then finetuning on a specific NLP task,
which in return need a lot of labeled training data.
Those are available in common languages, such
as the English language, however, in low resource
languages models fail to generalize well. The idea
is to transfer the knowledge about a task from a
high resource language to another low resource
language, called cross-lingual transfer (CLT).

To achieve CLT between tasks from different
languages, one has to induce a shared repre-
sentation space between the source and target
language. Previous SOTA methods used to
induce continuous cross-lingual representation
spaces by using cross-lingual word embeddings
(Mikolov et al., 2013b; Glavas et al., 2019) and
sentence embeddings (Artetxe and Schwenk,
2019). However, with transformers getting popular,
this survey will focus on inducing multilingual
word embeddings with transformers.

4.1 Zero-Shot Cross-Lingual Transfer

One way to try to combat sparsely labeled train-
ing data in one language is by pretraining trans-
former models on multiple languages and auto-
matically induce a multilingual word embedding.
This idea gave rise to powerful massively multi-
lingual transformers, such as mBert, XLM-R, and
the recently introduced mT5 (Devlin et al., 2019;
Conneau et al., 2020; Xue et al., 2021). These archi-
tectures can encode text from any of the languages
seen in pretraining and allows for a very straightfor-
ward approach to Zero-Shot cross-lingual model
transfer: Finetune the model using task-specific
supervised training data from one high resource
language (source-training) and predict on other
languages by feeding the target language text into
the finetuned model. Pires et al. (2019) show ef-
fective results of Zero-Shot cross-lingual transfer
with mBERT on POS tagging and NER for related
languages. Furthermore, Wu et al. (2020); K et al.
(2020) show the cross-lingual potential of mBERT
by extending the analysis. Nevertheless, the litera-
ture mostly showed good results in languages that
were from the same language family or that had
a large corpus in pretraining, languages such as
German, Spanish or French. This concern is raised
by multiple sources (Lauscher et al., 2020; Wu and
Dredze, 2020), which show that the performance



drops huge for distant target languages and tar-
get languages that have small pre-training corpus.
Furthermore, Lauscher et al. (2020) empirically
show that for massively multilingual transform-
ers, pre-training corpora sizes affect the Zero-Shot
performance in higher-level language understand-
ing tasks (e.g. NLI and QA), whereas the results
in lower-level language understanding tasks are
more impacted by typological language proxim-
ity. To summarize, Zero-Shot cross-lingual transfer
with source training is effective for languages that
are linguistically similar and languages that have a
great amount of data for pre-training. However, this
scenario is almost always never the case for low
resource languages, where cross-lingual transfer is
needed. The next section will investigate Few-Shot
transfer to mitigate the transfer gap.

4.2 Few-Shot Cross-Lingual Transfer

To improve upon the results of Zero-Shot CLT,
which only uses source training, we now addi-
tionally exploit the K task-specific examples in
the target language (Few-Shot cross-lingual sce-
nario) by further finetuning on those K examples
(target-adapting). Lauscher et al. (2020) experi-
ment with Few-Shot CLT on lower-level structured
prediction tasks (POS tagging, dependency parsing,
and NER) and higher-level language understanding
tasks (NLI and QA) with varying numbers of K
examples. They show that distant languages gain
much more in performance from Few-Shot data
than closely related languages. Hedderich et al.
(2020) use Few-Shot CLT on NER task on genuine
low-resource languages like Hausa and isiXhosa,
also showing significant improvements by finetun-
ing on the few examples. Zhao et al. (2020) applied
Few-Shot CLT with mBERT on POS, NER, and
sequence classification, observing the same phe-
nomenon. In summary, additional finetuning on
the given few examples from the target language
can significantly improve performances on distant
languages - Exactly where Zero-Shot CLT fails.
Since we only have to finetune on a small set of
examples, this additional finetuning is not compu-
tationally expensive but shows promising results.
As we only discussed "naively" finetuning for
target adaption, one could further investigate how
to exploit the given examples efficiently. Zhao et al.
(2020) investigated freezing parameters during fine-
tuning to mitigate the overfitting problem, however,
experiments show no significant improvements in

performance. To use the few given examples more
efficiently, Nooralahzadeh et al. (2020) use MAML
to further find optimal initialization parameters (af-
ter source training), which then can be used for
either Zero-Shot or again finetuning in a Few-Shot
setup. However, the method requires many train-
ing tasks in low-resource languages. Future work
could focus on using Meta-Learning further.

One downside of all Few-Shot CLT approaches
is that you need labeled data in the low resource
target language, which is typically hard to acquire.
It may become costly to annotate data for minor
languages, however as Lauscher et al. (2020) show,
even 10 annotated instances can give substantial
performance improvement. This begs the question
if annotating data is more cost-efficient in the long
run than using GPU hours.

5 Conclusion and Discussion

We studied two methods to tackle Few-Shot tasks
in NLP: Using pre-trained Language Models and
Meta-learning. Even though Meta-Learning pro-
vides diverse applications as most methods are task
and model agnostic, they struggle to solve unseen
diverse NLP tasks. Future work should investi-
gate how to improve generalization to new tasks.
Pre-trained language models can be effective by
reformulating NLP tasks as language model prob-
lems, enabling Few-Shot abilities. However these
methods require manual work to find a good re-
formulation and they favor tasks, that can be nat-
urally reformulated as a "fill-in-the-blank" task.
We then discussed a use-case of Few-Shot Learn-
ing: Few-Shot CLT. In CLT, we have the chance
to first finetune in a rich-resource language, and
then transfer the knowledge to a low-resource lan-
guage. Using more sophisticated methods to train
on high resource languages, e.g. Meta-Learning
(Nooralahzadeh et al., 2020), can improve perfor-
mance and is a promising research direction. Nev-
ertheless, most methods need labeled examples in
low resource languages, making them expensive
to obtain. As previously discussed in Section 1.3,
almost all Few-Shot techniques have high variance.
Therefore, we identify the necessity of standardiza-
tion of Few-Shot datasets. As a final word, there
are other approaches to Few-Shot Learning in NLP
that was not discussed in this survey, e.g. unify-
ing NLP tasks formats (McCann et al., 2018b; Yin
et al., 2020b; Raffel et al., 2020; Khashabi et al.,
2020).
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