

### Few-Shot Learning in NLP

A Survey

Minh Duc Bui, mbui@mail.uni-mannheim.de June 11, 2021

| Few-Shot Learning and Why its hard | Approaches<br>O<br>OOOO<br>OOOO | Few Shot Learning in Cross Lingual Setting | Summary & Discussion |
|------------------------------------|---------------------------------|--------------------------------------------|----------------------|
|                                    |                                 |                                            |                      |

### OUTLINE

Few-Shot Learning and Why its hard

Approaches

Optimization-Based Meta-Learning Approaches Reformulate Tasks as language modelling problems

Few Shot Learning in Cross Lingual Setting

Summary & Discussion

Approaches

Few Shot Learning in Cross Lingual Setting 00000

Summary & Discussion

### WHAT IS FEW-SHOT LEARNING?

| Supporting Set |                                                                                                                                                     |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (A) capital_of | <ul> <li>(1) <i>London</i> is the capital of <i>the U.K.</i></li> <li>(2) <i>Washington</i> is the capital of <i>the U.S.A</i>.</li> </ul>          |  |  |  |  |
| (B) member_of  | <ul> <li>(1) Newton served as the president of the Royal Society.</li> <li>(2) Leibniz was a member of the Prussian Academy of Sciences.</li> </ul> |  |  |  |  |
|                | Test Instance                                                                                                                                       |  |  |  |  |
| (A) or (B)     | Eulerwas elected a foreign member of theRoyal Swedish Academy of Sciences.                                                                          |  |  |  |  |

Figure 1: 2-Shot Relation Classification.

Approache 0 0000 Few Shot Learning in Cross Lingual Setting 00000

Summary & Discussion

### WHAT IS FEW-SHOT LEARNING?

Few-Shot Learning approaches **use prior knowledge** to generalize to new tasks containing only a **few samples** with supervised information.

| Took T         | Expe            | Perfor-            |       |
|----------------|-----------------|--------------------|-------|
| Idsk I         | Supervised      | Prior              | mance |
|                | Information     | Knowledge          | Р     |
| Relation       | Few examples of | Pre-learned        | ٨٥٥   |
| Classification | Relations       | language semantics | ACC.  |

Approache 0 0000 Few Shot Learning in Cross Lingual Setting

Summary & Discussion

### **TRANSFER LEARNING: SAMPLE EFFICIENCY**



**Figure 2:** F1 scores on SQuAD as a function of the number of training examples (log scale). BERT+supervised denote BERT that is pretrained on other datasets and tasks.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Yogatama, D. et al. Learning and Evaluating General Linguistic Intelligence. 2019.

Approaches

Approaches

Few Shot Learning in Cross Lingual Setting

Summary & Discussion

### **OPTIMIZATION-BASED APPROACHES**

### Goal:

• Learn a good set of parameter initialization by using many tasks and treating each task as a training example

### Training:

- Fine-tuning the model on a training set  $D_i^{tr}$  of a selected training task, which **only consists of** *K* **examples**
- Use the task loss L<sub>i</sub> on D<sub>i</sub><sup>test</sup> to update our original not fine-tuned model parameters by computing the gradient



Approaches 0 0 000 Few Shot Learning in Cross Lingual Setting

Summary & Discussion

### **OPTIMIZATION-BASED: LEOPARD<sup>1</sup>**



#### Trained on 7 tasks and evaluated on 17 tasks in few-shot scenario

<sup>&</sup>lt;sup>1</sup> Bansal, T., Jha, R., and McCallum, A. "Learning to Few-Shot Learn Across Diverse Natural Language Classification Tasks". 2019.

Approaches

Few Shot Learning in Cross Lingual Setting

Summary & Discussion

### **OPTIMIZATION-BASED: DISCUSSION**

 LEOPARD is first meta-learning approach that could generalize to test tasks, significantly different than training tasks (NLP)

| Ν               | k  | BERTbase | MT-BERT <sub>softmax</sub> | MT-BERT | Proto-BERT | LEOPARD |
|-----------------|----|----------|----------------------------|---------|------------|---------|
| Overall Average | 4  | 38.13    | 40.13                      | 40.10   | 36.29      | 45.99   |
|                 | 8  | 36.99    | 45.89                      | 44.25   | 39.15      | 50.86   |
|                 | 16 | 48.55    | 49.93                      | 49.07   | 39.85      | 55.50   |

**Figure 3:** Few-shot generalization performance across tasks not seen during training.

Approaches

Few Shot Learning in Cross Lingual Setting 00000

Summary & Discussion

### **META-LEARNING: DISCUSSION**

| Supporting Set |                                                                                             |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| (A) capital_of | _                                                                                           |  |  |  |  |
| (B) member_of  |                                                                                             |  |  |  |  |
| Test Instance  |                                                                                             |  |  |  |  |
| (A) or (B)     | <i>Euler</i> was elected a foreign member of <i>the Royal Swedish Academy of Sciences</i> . |  |  |  |  |

Figure 4: 2-Shot Relation Classification. Can you do zero-shot learning?

Approaches 0 0000 0000 Few Shot Learning in Cross Lingual Setting

Summary & Discussion

### How to use pre-trained language models?

• Transformers are simply pre-trained on a language modeling objective in a semi-supervised fashion

| Mask 1 Predictions                                  |  |  |  |
|-----------------------------------------------------|--|--|--|
| 45.2% bone<br>30.1% stick<br>15.3% toy<br>9.4% shoe |  |  |  |
|                                                     |  |  |  |

Reformulate Tasks as language modeling problems!



Summary & Discussion

### **REFORMULATE TASKS: FEW-SHOT WITH GTP-3**<sup>1</sup>

- Model is given a task description and *K* examples of context and completion, which they call model *priming*
- To make predictions, one final context is given, but the model has to fill in the completion

#### Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



<sup>1</sup> Brown, T. B. et al. Language Models are Few-Shot Learners. 2020.

Approaches

Few Shot Learning in Cross Lingual Setting

Summary & Discussion

### **REFORMULATE TASKS: GTP-3 RESULT**



Figure 5: Performance on SuperGLUE increases with model size and number of examples in context.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Brown, T. B. et al. Language Models are Few-Shot Learners. 2020.



Summary & Discussion

### **REFORMULATE TASKS: OTHER APPROACHES**

- iPET<sup>1</sup>
  - Reformulates tasks as cloze questions and uses ALBERT with regular gradient-based finetuning
  - · Uses knowledge distillation, which in turn need unlabeled data



|      | Model | Params<br>(M) | BoolQ<br>Acc. | CB<br>Acc. / F1    | COPA<br>Acc. | RTE<br>Acc. | WiC<br>Acc. | WSC<br>Acc. | MultiRC<br>EM / F1a | ReCoRD<br>Acc. / F1 | Avg<br>–    |
|------|-------|---------------|---------------|--------------------|--------------|-------------|-------------|-------------|---------------------|---------------------|-------------|
| test | GPT-3 | 175,000       | 76.4          | 75.6 / 52.0        | <b>92.0</b>  | 69.0        | 49.4        | 80.1        | 30.5 / 75.4         | <b>90.2 / 91.1</b>  | 71.8        |
|      | PET   | 223           | 79.1          | 87.2 / 60.2        | 90.8         | 67.2        | <b>50.7</b> | 88.4        | 36.4 / 76.6         | 85.4 / 85.9         | 74.0        |
|      | iPET  | 223           | <b>81.2</b>   | <b>88.8 / 79.9</b> | 90.8         | <b>70.8</b> | 49.3        | 88.4        | 31.7 / 74.1         | 85.4 / 85.9         | <b>75.4</b> |
|      | SotA  | 11,000        | 91.2          | 93.9 / 96.8        | 94.8         | 92.5        | 76.9        | 93.8        | 88.1 / 63.3         | 94.1 / 93.4         | 89.3        |

**Figure 6:** Results on SuperGLUE for GPT-3 primed with 32 randomly selected examples and for iPET after training on 32 random examples.

<sup>&</sup>lt;sup>1</sup> Schick, T. and Schütze, H. It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners. 2021.

### Few Shot Learning in Cross Lingual Setting

Approaches 0 0000 Few Shot Learning in Cross Lingual Setting ○●○○○

Summary & Discussion 0000

### **PRE-TRAINING ON SIMILAR TASKS**



Figure 7: F1 scores on SQuAD as a function of the number of training

Approache 0 0000 Few Shot Learning in Cross Lingual Setting

Summary & Discussion 0000

### **CROSS-LINGUAL SETTING**

- Transfer the knowledge about the same task from a high resource language to low resource language
- Process:
  - 1. Couple a multilingual Transformer with task-specific classifier
  - 2. Fine-tune model using task-specific supervised training data from one high resource language (*source-adaption*)
    - If stop here: Zero-Shot Transfer
  - 3. **Continue fine-tuning** on *K* task-specific examples in the (low resource) target language (*target-adaption*).

Approache 0 0000 0000 Few Shot Learning in Cross Lingual Setting

Summary & Discussion

### **CROSS-LINGUAL RESULTS: ZERO SHOT**

| Fine-tuning $\setminus$ Eval | EN    | DE    | ES    | IT    |
|------------------------------|-------|-------|-------|-------|
| EN                           | 96.82 | 89.40 | 85.91 | 91.60 |
| DE                           | 83.99 | 93.99 | 86.32 | 88.39 |
| ES                           | 81.64 | 88.87 | 96.71 | 93.71 |
| IT                           | 86.79 | 87.82 | 91.28 | 98.11 |

Figure 8: Zero Shot POS accuracy.<sup>1</sup>

| Task | Model | EN   | $\frac{\mathbf{Z}\mathbf{H}}{\Delta}$ | $\frac{\mathrm{TR}}{\Delta}$ | ${}^{\mathrm{RU}}_{\Delta}$ | AR<br>Δ | ${}^{\rm HI}_{\Delta}$ | ${}^{\rm EU}_{\Delta}$ | $_{\Delta}^{\mathrm{FI}}$ | ${}^{\rm HE}_{\Delta}$ | ${}^{\mathrm{IT}}_{\Delta}$ | $\Delta JA$ | $\Delta \mathbf{KO}$ | ${}^{\rm sv}_\Delta$ |
|------|-------|------|---------------------------------------|------------------------------|-----------------------------|---------|------------------------|------------------------|---------------------------|------------------------|-----------------------------|-------------|----------------------|----------------------|
| DEP  | В     | 92.3 | -40.9                                 | -41.2                        | -23.5                       | -47.9   | -49.6                  | -42.0                  | -26.7                     | -29.7                  | -10.6                       | -55.4       | -53.4                | -12.5                |
| POS  | В     | 95.5 | -33.6                                 | -26.6                        | -9.5                        | -32.8   | -33.9                  | -28.3                  | -14.6                     | -21.4                  | -6.0                        | -47.3       | -37.3                | -6.2                 |
| NER  | В     | 92.3 | -31.5                                 | -6.5                         | -9.2                        | -29.2   | -12.8                  | -8.5                   | -0.9                      | -9.2                   | -0.8                        | -51.1       | -12.9                | -1.9                 |

Figure 9: Zero-shot cross-lingual transfer performance with mBERT (B).<sup>2</sup>

<sup>&</sup>lt;sup>1</sup> Pires, T., Schlinger, E., and Garrette, D. How multilingual is Multilingual BERT?. 2019.

<sup>&</sup>lt;sup>2</sup> Lauscher, A. et al. From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual Transfer with Multilingual Transformers. 2020.

Approaches 0 0000 Few Shot Learning in Cross Lingual Setting 0000● Summary & Discussion 0000

### **CROSS-LINGUAL RESULTS: FEW SHOT**



**Figure 10:** Results of the few-shot experiments with varying numbers of target-language examples k.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Lauscher, A. et al. From Zero to Hero: On the Limitations of Zero-Shot Cross-Lingual Transfer with Multilingual Transformers. 2020.

### **Summary & Discussion**

Approaches

Few Shot Learning in Cross Lingual Setting

Summary & Discussion

### **BIG TRANSFORMERS, HIGH VARIANCE**



**Figure 11:** Visualization of validation performance, where each colored cell represents the performance of a training run<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup> Dodge, J. et al. Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping. 2020.

Approache 0 0000 Few Shot Learning in Cross Lingual Setting 00000

Summary & Discussion

### SUMMARY & DISCUSSION

- Discussed Optimization-based Meta-Learning
  - + Efficient use of few examples through optimal parameter initialization
  - Creating training tasks that enable finding a good initialization set to solve the target task is difficult.
  - Overfitting on task distribution
- · Discussed reformulating to Language Modelling problems
  - + Achieve impressive results with small number of examples
  - Favor tasks, that can naturally be reformulated as "fill-in-the-blank"
  - Finding the right prompt is an art, needs a big enough validation set.<sup>1</sup>
  - Restricted input size

<sup>&</sup>lt;sup>1</sup> Gao, T., Fisch, A., and Chen, D. Making Pre-trained Language Models Better Few-shot Learners. 2020.

Approache 0 0000 Few Shot Learning in Cross Lingual Setting 00000

Summary & Discussion

### SUMMARY & DISCUSSION

- Discussed Few-Shot Cross-Lingual Transfer
  - + Finetuning on few examples, can significantly improve performances on distant languages exactly where zero-shot CLT fail.
  - Inefficient way of finetuning.
  - Need labeled data in the low resource target language, which is typically hard to acquire.
- · Few-Shot in General
  - + Enables to train without needing many training examples
  - + Advances to ultimate goal of NLP: General-purpose language understanding
  - Since most method rely on Transformers, they suffer high variance.
  - Essential to use the same set or average between multiple equal sets when comparing few-shot approaches, which is still lacking

## Appendix

### PRE-TRAINING ON LANGUAGE MODELLING OBJECTIVE

| Alaska                              |                              | York                                              |
|-------------------------------------|------------------------------|---------------------------------------------------|
| Alaska is                           | Word prediction using contex | t from only one side New York                     |
| Alaska is about                     |                              | than New York                                     |
| Alaska is about twelve              |                              | larger than New York                              |
| Alaska is about twelve times        |                              | times larger than New York                        |
| Alaska is about twelve times larger |                              | twelve times larger than New York                 |
| Alaska is about twelve times larger | than                         | about twelve times larger than New York           |
| Alaska is about twelve times larger | than New                     | is about twelve times larger than New York        |
| Alaska is about twelve times larger | than New York                | Alaska is about twelve times larger than New York |
|                                     |                              | Planks to 1-th our distance                       |

#### Word prediction using context from both sides (e.g. BERT)

Alaska is about twelve times larger than New York Alaska is about twelve times larger than New York Alaska is about twelve times larger than New York Alaska is about twelve times larger than New York Alaska is about twelve times larger than New York Alaska is about twelve times larger than New York Alaska is about twelve times larger than New York Alaska is about twelve times larger than New York Alaska is about twelve times larger than New York

Figure 12: Pretraining on a language modelling objective.

### PRIOR KNOWLEDGE: GENERAL PURPOSE LANGUAGE UNDER-STANDING

 Solving NLP tasks requires the model to learn about syntax, semantics, as well as certain facts about the world



Figure 13: What Does BERT Look At? An Analysis of BERT's Attention [Clark et al. 2019]

### META-LEARNING: DISCUSSION

- Challenge: Create training tasks enabling meta-learning algorithms to find a good initialization
  - Requires labeled data from many different tasks and additionally
- Major obstacle for meta-learning approaches is to solve diverse NLP few-shot tasks with one model
  - Suffers from overfitting to the training task-distribution (meta-overfitting)<sup>1</sup>
  - Does not use any information of the underlying task

<sup>&</sup>lt;sup>1</sup> Bansal, T., Jha, R., Munkhdalai, T., et al. "Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks". 2020.

### **REFORMULATE TASKS: DISCUSSION**

- Achieve impressive results with only a small amount of examples
- Approaches favor tasks, that can naturally be reformulated as "fill-in-the-blank" problems, leaving room for future work
- LMs have restricted input size
  - · Tasks that have long input sequences can not be properly solved
  - Future work: Use LM that allow long input sequences<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The Long-Document Transformer. 2020.

### **BIG TRANSFORMERS, HIGH VARIANCE**



**Figure 14:** Distribution of task scores across 20 random restarts for BERT, and BERT with intermediary fine-tuningon MNLI. Fine-tuned on nomore than 1k examples for each task.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Phang, J., Févry, T., and Bowman, S. R. Sentence Encoders on STILTs: Supplementary Training on Intermediate Labeled-data Tasks. 2019.