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Abstract

Cross-Lingual Information Retrieval is the
task of getting information in a different lan-
guage than the original query. Our goal is
to implement a lightweight system, unsuper-
vised and supervised, to recognize the trans-
lation of a sentence in a large collection of
documents in a different language. Testing
different cross-lingual word embedding- and
text-based features with wide-ranging param-
eter combinations, our best model, the MLP-
Classifier, achieved a Mean Average Precision
of 0.8459 on our EN-DE test collection. Our
lightweight system also demonstrates zero-
shot performance in other languages, such as
Italian and Polish. We compare our results
to the SOTA, but resource-hungry transformer
model XLM-R.

1 Introduction

The rise of the Internet and the exponentially
growing amount of multilingual data online makes
it necessary for Retrieval systems to not only be
able to query documents in the same language but
in different languages as well.

Retrieving information in a different language
requires the documents and the queries to be
mapped into the same representation space.
Since sparse representations based on machine-
translation face difficulties for resource-poor lan-
guages, dense representations derived via cross-
lingual word embeddings or multilingual text en-
coders like XLM-R became state of the art for
Cross-Lingual tasks. These dense vectors can cap-
ture semantic associations between text represen-
tations far better in much smaller space leading
to better results, especially when lower-resource
languages are involved. However, as transformer
models such as XLM-R are computational expen-
sive to train, which lead to a large carbon foot-
print, the question remains if its size is necessary

for tasks like translation retrieval. In this project,
we want to answer a simple question: How far can
we get with traditional, lightweight machine learn-
ing approaches and if the complexity of transform-
ers justifies its means.

Our approach of creating a Cross-Lingual Infor-
mation Retrieval system to get the translation of a
query in a different language involves using differ-
ent unsupervised methods and the training of tradi-
tional supervised methods based on cross-lingual
word embeddings. We then contrast our approach
to SOTA multilingual text encoders. Finally, to
compare the models, we use the Mean Average
Precision as our metric on the Europarl Corpus, a
standard data collection for sentence-level Cross-
Lingual Information Retrieval.

This report is divided as follows. In section 2
we describe our data and how we generated our
feature vector to represent the information for our
traditional supervised models. Then, in section 3,
we show our implementation strategy for differ-
ent supervised and unsupervised ranking methods
and their performance on our task. To get a bet-
ter estimation of the possibilities of our models,
we evaluate them for different languages and on a
document-level task in section 4. In section 5 we
give a summary and discussion of our results.

2 Data

This section deals with the description of our data
set and the preprocessing and the generation of
the associated feature vector, which is later used
to train our model. We distinguish between text-
based features and embedding-based features cre-
ated via different methods.

2.1 Europarl data set
Our project is based on data generated from the
Europarl Corpus (Koehn, 2005). The corpus is ex-
tracted from proceedings of the European Parlia-



ment and can be easily accessed online. The cor-
pus currently contains 21 different languages.

Our main section focuses on the parallel-corpus
for German and English, containing 1,920,209
sentences with 44,548,491 words in German and
47,818,827 English words. In our evaluation,
we also use our model on different language
pairs, specifically English-Polish and English-
Italian from the Europarl Corpus. The corpus
for Polish and English contains 632,565 sen-
tence pairs with 12,815,544 Polish and 15,268,824
English words. In comparison, the English-
Italian corpus consists of 1,909,115 sentences with
47,402,927 Italian and 49,666,692 English words.

In the following, we focus on an extract of
220,000 sentence pairs from the EN-GER corpus,
where 20,000 pairs represent correct translations
and 200,000 pairs are wrong translations.

2.2 Sentence Generalisation
For our traditional supervised models, we first
need to clean and generalize our aligned sentence
pairs. Therefore, we tokenize both English and
German sentences into bag-of-words representa-
tions to better handle individual words. Afterward,
we lowercase all different words to prevent case
sensitivity. At last, we remove all stopwords from
our bag-of-words representations (BoW). Stop-
words do not add much value to distinguish be-
tween different sentences, so we ignore them. We
can see a comparison between our original sen-
tence and the generalized sentence in Table 1 be-
low. For the creation of embedding-based fea-
tures, we additionally lemmatize all words and
drop punctuation and numbers.

Origin

”You have requested a debate
on this subject in the course of
the next few days, during this
part-session.”

BoW
[requested, debate, subject,
course, next, days, ,, part-
session, .]

Table 1: Comparison of Origin and Generalisation.

2.3 Induction of Multilingual Word
Embedding Space

We study two approaches of inducing a multi-
lingual word embedding: Projection-based Cross-
Lingual Word Embeddings and pre-trained multi-

lingual text encoders based on Neural Transformer
architectures. Both methods are candidates for our
supervised and unsupervised retrieval approach.

2.3.1 Projection-Based Models
Projection-based methods rely on independently
trained monolingual word vector spaces in the
source language XL1 and target language XL2,
that post-hoc align the monolingual spaces into
one cross-lingual word embedding XCL. The
alignment is based on word translation pairs D,
which can be obtained by existing dictionaries
or by inducing it automatically. Applying ex-
isting dictionaries, we use bilingual supervision
and, therefore, a supervised method. Inducing the
embeddings automatically is an unsupervised ap-
proach and usually assumes (approximately) iso-
morphism between monolingual spaces. We use
Proc-B as a supervised method and VecMap as
an unsupervised method. In both cases, we use the
300-dimensional fastText word vectors pre-trained
on Wikipedia articles by (Bojanowski et al., 2016).
We restrict the fastText vocabulary to the 100,000
most frequent terms in each language.

Proc-B (Supervised): Proc-B is a super-
vised projection-based method, so, we use a pre-
obtained dictionary Dw = {wk

L1, w
k
L2}Kk=1 con-

taining K word pairs for finding the alignment,
where wk

L1 ∈ XL1 and wk
L2 ∈ XL2 are trans-

lations of each other. We define the fastTest
monolingual embedding spaces as XL1 and XL2

with the corresponding fastText vocabulary VL1
and VL2. Given the translation dictionary D, we
can retrieve the corresponding monolingual vec-
tors from XL1 and XL2 and then construct aligned
monolingual subspaces XS = {skL1}Kk=1 ⊆ XL1

and XT = {tkL2}Kk=1 ⊆ XL2, where the aligned
rows are translations of each other. Mikolov et al.
(2013) learns the projection WL1, by minimizing
the Euclidean distance between the linear projec-
tion of XS onto XT :

WL1 = argmin ‖XSW −XT ‖ . (1)

To improve performance, we constrain WL1

to be an orthogonal matrix (Xing et al., 2015).
Then equation 1 becomes the Procrustes problem,
which can be solved by a closed form solution, us-
ing the singular value decomposition of XT

SXT

(Schönemann, 1966):



WL1 = UV T ,

UΣV T = SVD(XT
SXT ).

(2)

Solving equation 2 corresponds to our method
PROC. To further improve the quality of the lin-
ear mapping WL1, which is restricted to the initial
translation dictionary, we employ a bootstrapping
approach to augment the initial dictionary, called
PROC-B (Glavas et al., 2019).

To account for polysemy of words, we use the
proposed train set of (Conneau et al., 2018) to
align the monolingual word embeddings. The
train set include different translations of the same
word for each language pair consisting of the
5000 most frequent (unique) words in the source
language and corresponding translation(s). No-
tice that the training set can contain more trans-
lation pairs than unique source words because
each source word consists of multiple translation
pairs. Furthermore, we only keep translation pairs,
where the source and target word are contained in
our (trimmed) fastText vocabulary.

For PROC, we use the full training set
PROC(∼5k) and a smaller training set with 500
unique source words PROC(∼0.5k). Further-
more, we only use the bootstrapping technique
for the smaller set PROC-B(∼0.5k) to improve
performance as we did not notice any improve-
ment (on BLI task) for the full training set.

VecMap (Unsupervised): VecMap (Artetxe
et al., 2018) is a fully unsupervised method, which
uses heuristics to build the seed dictionary. The
method consists of 4 sequential steps:

1. Normalize the embeddings by normalizing
the length, centering the mean values of each
dimension, and normalizing the length again.

2. Unsupervised initialization of an initial solu-
tion (seed dictionary) assumes that the mono-
lingual similarity distributions are approxi-
mately equal across languages.

3. Robust self-learning procedure that itera-
tively improves the initial solution. VecMap
uses different (empirically motivated) im-
provements for robustness, for example,
stochastic dictionary induction, enabling the
model to escape poor local optima.

4. Final refinement of the final solution by sym-
metric re-weighting.

For more details, we refer to the original paper
(Artetxe et al., 2018).

2.3.2 Pre-trained Multilingual Text Encoders
We use the implementation of a pre-
trained XLM-R (Conneau et al., 2020) from
huggingface (Wolf et al., 2019), which is able
to induce a multilingual, contextualized word
embedding. Motivated by the results of Litschko
et al. (2021), we exploit the contextualized repre-
sentations by directly encoding the whole input
text. To understand how we encode the text, let us
assume that a term ti (i.e. a word-level token) is
tokenized into a sequence of K subword tokens.
The model creates contextualized subword em-
beddings for each subword −−−→wpi,k, k = 1, ...,K of
the term ti. Following Litschko et al. (2021), we
obtain the contextualized representation of each
term ti by taking the representation of its first
subword token:

−→
ti = −−−→wpi,1.

To finally encode the whole input text, we com-
pute the average of the contextualized representa-
tions of all terms ti in the text.

We use the embeddings from the first
layer XLM-R(Layer 1) and the last layer
XLM-R(Layer 12).

2.3.3 Evaluating on the BLI Task
In this section, we want to identify which induced
cross-lingual word embeddings are useful for our
supervised models to save computation later on.
As we are going to use various distance measure-
ments in the induced embedding to extract features
for our downstream task (see Section 2.4.2), trans-
lations must be close to each other to extract mean-
ingful features. For this purpose we evaluate on
the BLI task.

Our intermediate results show that XLM-R and
the low supervision variant of PROC are not suit-
able for extracting similarities, which is why we
will not use them for our supervised method (and
we want to avoid using the transformer model
to be computational cheap). As PROC(∼5k),
VecMap and PROC-B (∼0.5k) showed simi-
lar good results, we use all three to extract features
for our supervised models, allowing our models to
choose from a variety of different CLWE.



High Supervision Average 6 LPs
PROC(∼5k) 0.4699
Low Supervision
PROC(∼0.5k) 0.3071
PROC-B (∼0.5k) 0.4611
Unsupervised
VecMap 0.4553
XLM-R (Layer 1) 0.2764
XLM-R (Layer 12) 0.1484

Table 2: We test our multilingual word embeddings on
the BLI task, using mean average precision (MAP) as
metric. We take the proposed test sets of Conneau et al.
(2018), which take the polysemy of words into account
(1500 unique source words) and we average the MAP
across 6 language pairs (EN-DE, EN-DU, EN-IT, EN-
PL, EN-FI and EN-RU).

2.4 Feature Generation
We want to differentiate for two input sentences
from different languages if they are direct transla-
tions of each other or not, denoted by 1 if a sen-
tence is a direct translation or 0 otherwise. There-
fore, we need to define a function ψ that maps our
input sentences into a vector Xi = (xi1, ..., xim)
consisting of m features for each language pair
that is used to train our model.

Therefore, we define two language spaces
L1 = {l11, ..., l1n} and L2 = {l21, ..., l2n}
describing the two languages respectively. Our
input into ψ is a tuple (l1i, l2i) and a target label

yi =

{
1 right translation,
0 wrong translation.

So our function ψ maps the original
set {(l1i, l2i), yi}i=1,...,n to a training set
{Xi, yi}i=1,...,n via different preprocessing
operations described in the following.

2.4.1 Text-Based Features
To begin with, we focus on features that are gen-
erated directly out of the bag-of-words represen-
tations using different techniques, including, e.g.
counting of appearances. Then, we use different
comparative figures as features, precisely abso-
lute, relative, and normalized differences. When
we derive these comparative features, we always
use asymmetrical approaches to increase transfer-
ability for other translation tasks. So, we get the
absolute difference by subtracting the associated
English amount from the German count and the
relative difference by dividing the absolute differ-
ence with the sum of the English and the German

count. Since it is clear that longer sentences are
more likely to have higher counts of, for exam-
ple, words, we have to take into account that the
length of sentences can vary a lot across different
languages. Therefore, we also compute the nor-
malized difference by first dividing the measure
by the length of the sentence in the particular lan-
guage. We now give an overview of all the text-
based features that contribute to our model.

Number of (unique) words. Assuming that the
number of words and especially unique appear-
ances of words within a sentence has much impact
on the meaning of a sentence, we count the num-
ber of words and the number of unique words sep-
arately for each of the sentences in both languages
and compare them as described above.

Number of all punctuation marks. Under
the hypothesis that punctuation marks have the
same importance as the number of words, we
count the number of all appearances as well as the
amount of the following punctuation marks sepa-
rately: Question marks, exclamation marks, com-
mas, semicolons, colons, ellipsis, apostrophes, hy-
phens, quotation marks, slashes, brackets, and
other special characters. The differences are cal-
culated as described. We assume that especially
the appearance of question and exclamation marks
have a significant impact on our model perfor-
mance since it is likely that two sentences are not
a translation of each other if there is a difference
between these two. However, we specifically ex-
cluded the amount of sentence-ending points and
did not take them into account because we noticed
that in some cases, two or more sentences in En-
glish are translated into only one German sentence
and the other way around.

Number of characters. In addition, we include
the number of characters per sentence. Further,
we also take the average of characters per word
because long sentences with many short words can
have the same counts as short sentences with long
words. However, it is unlikely that a sentence pair
like that is a direct translation.

The following features are all based on POS-
tagging with the already implemented spacy li-
brary, which allows us to handle NLP tasks for
over 60 languages efficiently.

Number of word types. Based on our POS-
tagging, we count the number of word types de-
scribed by the core universal POS tag list1, such

1https://universaldependencies.org/u/pos/



as nouns, adjectives, or verbs, and only exclude
punctuation marks from the list, as we already
handled them. We get the absolute difference be-
tween the numbers across the different word types.

Verb times. Under the assumption that sen-
tences are more likely to be direct translations if
the verb times in both sentences match, we extract
the different verb times with the help of the spacy
package and compare the amount regarding past,
present, and other verb times.

Jaccard coefficient of numbers. One feature is
the Jaccard coefficient of the named number in the
sentences in source and target languages. Given
two sets, A and B, the Jaccard coefficient is calcu-
lated according to this formula:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

2.4.2 Embedding-Based Features
Furthermore, we describe our approach to extract
embedding-based features from our induced em-
bedding space.

Jaccard coefficient of direct translations. The
Jaccard coefficient of direct translations is calcu-
lated using the original sentence and its translation
based on the cross-lingual word embedding. The
word’s translation is the closest neighbor from the
target language sentence corpus based on the dis-
tance of the cross-lingual word embeddings mea-
sured via cosine similarity. This is calculated for
the translation from source to the target language
and from target to source language. Both scores
are then averaged to one single score.

Sentence Embedding Euclidean distance. We
also derive the euclidean distance between the sen-
tence embeddings from source and target. One
sentence embedding aggregates the words by av-
erage, the other averages weighted by tf-idf.

Sentence Embedding Cosine Similarity. We
also include the cosine similarity between the
sentence embeddings from source and target and
again aggregate by averaging or using tf-idf.

3 Learning to Rank (L2R)

3.1 Unsupervised Ranking
First, we introduce an unsupervised ranking sys-
tem to build a naive, but competitive baseline.
We evaluate the cross-lingual word embeddings,
produced by PROC(∼5k), PROC-B(∼1k)
VecMap, XLM-R (Layer 1) and XLM-R

(Layer 12), described in Section 2.3. To re-
trieve embeddings for the query q and all docu-
ments in the document collection D, we aggregate
each word embedding by either averaging (AVG)
or using tf-idf weighting (TFIDF). We use the co-
sine similarity (COS) as our similarity measure,
and additionally, we use the Jaccard coefficient of
direct translation (Jaccard) as another unsuper-
vised ranking method. Finally, we rank the docu-
ments according to the measurements.

To choose the best unsupervised method, we
evaluate on the validation set, described in Section
3.2.1. The results can be found in Table 3. First,
we see that the multilingual embeddings, induced
by the XLM-R model, lack quite far behind the
other methods as they do not explicitly induce a
cross-lingual word embedding, where word trans-
lations are near each other. All three projection-
based cross-lingual word embeddings behave sim-
ilarly. The Jaccard coefficient of direct transla-
tions is significantly better than the cosine simi-
larities. Looking into the ranking, we see that the
cosine similarity sometimes rank sentences high
that do not relate to the source sentence in any
way. This shows that aggregating (averaging or tf-
idf) and then comparing word embeddings leads
to higher false-positive rates. However, the Jac-
card coefficient is much simpler and ”forces” a re-
lation between source sentences and high-ranked
sentences: Both should contain translations based
on the cross-lingual word embedding.

As VecMap has the advantage of inducing the
cross-lingual word embedding in an unsupervised
fashion, which makes the ranking approach com-
pletely unsupervised and is not lacking far behind
the best approach Proc(∼5k) with Jaccard, we
choose VecMap with Jaccard to report on our test
set.

3.2 Supervised Ranking
In the following section, we describe our approach
to implement a supervised model that accurately
detects the translation of a query sentence q in a
document collectionD. Our result is a binary clas-
sification model that ranks the documents accord-
ing to the confidence assigned to each of the dif-
ferent documents. We first describe our training,
validation and test set used for judging and tuning
our models. Afterward, we describe our different
supervised models.



3.2.1 Train, Validation and Test Set
We aim to train a supervised classifier, and for
that reason, we need to generate training, valida-
tion and a test set. As we already described, our
training set is derived from our source and our
target language via different preprocessing steps.
Our final training set Xtrain = {Xi, yi}i=1,...,n

contains n = 220, 000 training examples , where
each Xi = (xi1, ..., xim) ∈ Rm represents our
feature vector for a specific translation pair and
yi is 1 for relevant documents and 0 for non-
relevant documents. We retrieve the non-relevant
documents by randomly subsampling 100 wrong
translations (to reduce computation) and then cal-
culating the cosine similarity between the given
query q. We then take the five closest transla-
tions according to the cosine similarity measure
in the cross-lingual word embedding induced by
PROC(∼5k) as non-relevant documents.

Our classification model is described by a func-
tion f : Rm → [0, 1] that maps our feature vector
to the confidence as translation score, with high
scores more likely to represent a true translation.

Furthermore, we use a validation set to se-
lect features and tune the hyperparameter of the
model. The validation set consists of a query-
document collection derived from a set of queries
Q = {q1, ..., qs} and a set of documents D =
{d1, ..., dr} containing the right translation for
each of the queries, where s � r. We create a
query-document pair for each possible combina-
tion with the cartesian product of Q and D. We
generate the validation set by applying our prepro-
cessing function ψ to the cartesian product. We
use our model to assign a translation score to each
pair and rank them according to the score. We
chose query collection of size s = 100 and a doc-
ument collection of size r = 5, 000. So, our whole
validation set is of size t = 500, 000.

The independent test set is constructed in the
same way as the validation set with the same sizes
and it does not contain any sentence seen during
training and feature/hyperparameter selection.

As we produce a ranking, we need a rank-aware
evaluation metric. For that purpose, we calculate
the Mean Average Precision (MAP), which sim-
plifies, as we only have one relevant document d
each query q:

MAP =
1

|Q|

|Q|∑
j=1

1

Rdj

,

where Q is the set of queries and Rdj the rank
of the corresponding right translation of query j.
We always report the MAP score, if not otherwise
stated.

3.2.2 Models
In this section, we describe our selected models
and show that we improve performance signifi-
cantly by doing feature and hyperparameter se-
lection (on the validation set). First, we discard
correlated features and features that only have one
value. We use z-normalization to scale our fea-
tures and get a first estimator for all models with
97 features in total. To improve our model, we
use forward selection for every model to get the
best subsets and afterward perform hyperparame-
ter optimization via Grid Search on our validation
set. The results of the selection on our validation
set can be seen in Table 3. The final results on our
unseen EN-DE test set can be found in Table 4.

Naive Bayes. As we still have many fea-
tures which could correlate with each other, our
Naive Bayes model only achieves a MAP score of
0.3244. However, we can significantly improve
the performance up to the 0.8068 MAP score with
12 features when making a forward selection. As
there is no hyperparameter for this model to select,
we get the final MAP score of 0.8068.

Logistic Regression. Starting from our base-
line using all the features, we get a MAP score
of 0.6661. We now use forward feature selection
to reduce our feature space even further, which
results in a MAP score of 0.8321 using only 13
features. In the next step, we use hyperparameter
optimization to get an even better estimate. We
test different settings, but unfortunately, this only
improves our final MAP score by a small margin
achieving a final map score of 0.8323 using 14 fea-
tures, seven of them embedding-based and seven
text-based.

XGBoost. XGBoost starts with a MAP score of
0.7100 and is then improved with our forward se-
lection, reaching a MAP score of 0.8330. It only
selected three embedding and five text-based fea-
tures. Unfortunately, we could not increase perfor-
mance by our hyperparameter optimization signif-
icantly, as we could only test a handful of different
hyperparameter combinations since we lacked the
computational power.

MLPClassifier. For the MLPClassifier, we see
that our first baseline performs poorly with a MAP
score of 0.6198 for all 97 features in the default



setting (1 hidden layer with 100 hidden units). It
seems that the model is too complex and there-
fore overfitting the train data. So, we use for-
ward feature selection again, resulting in a MAP
score of 0.8477 achieved using nine features, 5 of
them embedding-based and 4 of them text-based.
We try to improve our model performance fur-
ther using hyperparameter optimization. Trying
many different parameter settings, we notice that
our model did not improve during the optimiza-
tion. Surprisingly the default parameter performs
best.

Supervised
All
features

Forward
Selection

Final

Naive Bayes 0.3244 0.8068 0.8068
Logistic Regression 0.6661 0.8321 0.8323
XGBoost 0.7100 0.8330 0.8357
MLPClassifier 0.6198 0.8477 0.8477

Unsupervised Similarity Aggregating Final
PROC(∼5k) COS AVG 0.4833
PROC(∼5k) COS TFIDF 0.5509
PROC(∼5k) Jaccard - 0.7515
PROC-B(∼0.5k) COS AVG 0.4417
PROC-B(∼0.5k) COS TFIDF 0.5309
PROC-B(∼0.5k) Jaccard - 0.7376
VecMap COS AVG 0.5721
VecMap COS TFIDF 0.6234
VecMap Jaccard - 0.7366
XLM-R (Layer 1) COS AVG 0.0355
XLM-R (Layer 12) COS AVG 0.0060

Table 3: For the supervised methods, we evaluate all
features and then select a subset of features. Finally,
we report our results after hyperparameter-tuning on
our validation set (MAP score). Additionally, we re-
port and choose our best unsupervised method.

XLM-R. To compare our traditional supervised
models to transformer models, we choose the mas-
sively multilingual transformer model XLM-R.
We train the model by using a pre-trained imple-
mentation xlm-roberta-base from hugging-
face (Wolf et al., 2019). We feed the unprocessed
sentence pair into the XLM-R tokenizer (seperated
by a special token) and then into the model. Our
initial experiment shows that the XLM-R model is
prone to favor the majority class without any mod-
ification and is very unstable, especially at the start
of the training. Therefore, to make training more
stable, we use a small learning rate at the start
and linearly scale it up to the initial learning rate
(warm-up steps). We investigate two approaches:
In the first one, we downsample the data set to
the minority class and randomly sample to cre-
ate batches (XLM-R Downsampling). In the
second approach, we do not downsample but use
the following weighted loss to combat class imbal-

ance:

L =
1

2
(L+ + L−) ,

where L+ is the loss of the positive class and L−
the loss of the negative class. Additionally, we
construct a batch, such that it contains the trans-
lation and the ten negative translations for each
source sentence (XLM-R Weighted).

4 Evaluation

4.1 Evaluation on sentence-level
We are now using our final models both supervised
and unsupervised to evaluate our model on an un-
seen EN-DE test set and perform zero-shot on two
different languages: Italian and Polish. With this
language combination we have the possibility to
judge and compare our performance on languages
from different families inside the Indo-European
language family, specifically Germanic (DE), Ro-
manic (IT) and Balto-Slavic (PL). Therefore, we
use our fitted model trained with EN-DE sentence
pairs, on the already mentioned parallel-corpus for
English-Italian and EN-PL to get an estimate how
suitable our models are for zero-shot transfer. We
prepare test sets for both languages that are com-
parable to our EN-DE test set. Therefore, we
create query-document sets with 100 queries and
5,000 documents for the new languages resulting
in test sets of 500,000 query-document pairs.

EN-DE EN-IT EN-PL AVG ALL
Unsupervised
VecMap + Jaccard 0.7778 0.7945 0.7752 0.7825
Supervised: Traditional
Naive Bayes 0.8128 0.7947 0.8242 0.8106
Logistic Regression 0.8367 0.8311 0.8381 0.8353
XGBoost 0.8431 0.8686 0.8665 0.8594
MLPClassifier 0.8459 0.8725 0.8691 0.8625
Supervised: Transformers
XLM-R Downsampling 0.9287 0.8849 0.9235 0.9124
XLM-R Weighted Loss 0.9351 0.9040 0.9155 0.9182

Table 4: Model Comparison on the sentence pair re-
trieval task. All supervised models were trained on
the EN-DE corpus. We show zero-shot performance
on EN-IT and EN-PL.

Unsurprisingly, our supervised traditional ap-
proaches beat the unsupervised methods. Further-
more, our high MAP scores on Italian and Polish
indicate good zero-shot performance, as they are
only slightly worse than the MAP scores for Ger-
man most of the time. In some cases, our model
performs even better on the other languages, e.g.,
the MLPClassifier. Looking at the feature impor-
tance of logistic regression and XGBoost, we see



that our models put much importance on embed-
ding features that are generated from our embed-
ding spaces, and we noticed in our training process
that the alignments work better for EN-PL than for
EN-DE. Our best supervised traditional approach
is the MLPClassifier with an average MAP score
of 0.8625.

The XLM-R with the weighted loss strategy
slightly beats the downsampling strategy and
achieves the best average MAP score of 0.9182.
With these results, we see that using a large, com-
putational demanding XLM-R transformer signifi-
cantly beats our traditional approaches on the EN-
DE and in the other zero-shot languages.

4.2 Evaluation on document-level
Finally, we want to use our trained models on
document-level Cross-Lingual Information Re-
trieval. Therefore, we use the WikiCLIR DE-
EN Wikipedia data set (Schamoni et al., 2014)
to evaluate whether our models can be used on a
document-level task instead of sentence-level.

4.2.1 WikiCLIR data set
The WikiCLIR corpus is a large-scale data explic-
itly set used for document-level CLIR tasks. It
contains 245,294 German sentence queries with
3,200,393 extracted documents from Wikipedia
that are marked as either the corresponding En-
glish document or another related document. To
use our pipeline, we create a test set consisting of
100 queries and 5,000 documents, with 1 denoting
the corresponding documents (’right translation’)
and 0 otherwise.

4.2.2 Evaluation
We proceed in the same manner as before and
transform the data the same way. As we expected,
we can see in Table 5 that all our models per-
form poorly. We do not get any reliable ranking
that can assign the queries to their corresponding
documents. Since we use comparable text-based
features that are dependent on the comparison be-
tween query and documents, we could anticipate
this poor performance as they cannot capture the
big difference between our sentence queries and
the documents. So, our trained models do not have
a chance because the training data differs a lot. To
get reliable results on document-level, we would
need to separately train a model on document-
level. Lackeing computational power and time, we
leave this experiment for future work.

Unsupervised: VecMap
Cosine AVG/
TFIDF

0.0031/
0.0231

Jaccard
Coefficient

0.1181

Supervised: Traditional

Naive Bayes 0.0003
Logistic
Regression

0.0079

XGBoost 0.0022 MLPClassifier 0.0004
Supervised: Transformers
XLM-R
Weighted

0.0051

Table 5: Model Comparison for Cross-Lingual Docu-
ment Retrieval. As we lacked computational power, we
do not report the XLM-R Downsampling model.

5 Discussion and Outlook

We generated a variety of models to recognize
translations and rank documents for queries on
sentence-level CLIR tasks. We have seen that us-
ing traditional machine learning models can lead
to reasonable performances and transmit these re-
sults in a zero-shot transfer into other languages.
We are sure that more computing power and more
training data, especially the MLPClassifier, can
be further improved, producing better results. We
were, however, not able to beat the XLM-R model.
As the gap between our best lightweight model
and the XLM-R model is not big, we hypothe-
size that our models are much more efficient in
the retrieval task, and with more time, we could
further close this gap, making the high complexity
and computational demanding training of XLM-R
unnecessary (for this specific task). We also rec-
ognize that our models rely heavily on the induced
cross-lingual word embeddings and for distant
languages, the quality of these embeddings drop
(Glavas et al., 2019). Therefore, our supervised
methods also suffer in distant languages. How-
ever, multilingual transformers also suffer from
the same problem (Lauscher et al., 2020). Future
work could investigate which method is more ro-
bust for distant language pairs. Another aspect one
could investigate is, how much the similarity be-
tween sentences in the retrieval corpus affect our
models. Since we use quite a simple approach, our
models could fail in such scenarios, and the trans-
former model could widen the gap even more.

Unfortunately, we can also conclude that our
models do not work in any way on document-level
tasks. That was to be expected, as we focus a lot
on direct comparison features. However, due to
the different structures of query and documents in
the WikiCLIR data set, these features cannot be
transferred in the same manner.
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