Improving Cross-Lingual Representations by Distilling
Multilingual Encoders into Monolingual Components

Master Thesis

presented by
Minh Duc Bui
Matriculation Number 1557406

submitted to the
Data and Web Science Group
Prof. Dr. Simone Paolo Ponzetto
University of Mannheim

Mai 2022

Contents

1 Introduction

1.1 Motivation e
1.2 Research Objective & Contribution
1.3 Thesis Structure

2 Preliminaries & Related Work

2.1 Cross-Lingual Representation Learning
2.1.1 Motivationo
2.1.2 Constructing Word Representations
2.1.3 Evolution of Architectures
2.1.4 Cross-Lingual Static Word Representations
2.1.5 Cross-Lingual Contextualized Word Representations . . .
2.1.6 Challenges in Multilingual Transformers
2.2 Knowledge Distillation
2.2.1 Motivation & Preliminaries
2.2.2 Brief History: Knowledge Distillation for Transformers . .
2.2.3 Transformer Components Distillation
2.2.4 Distillation Setup Strategies
225 Challenges
2.3 Parameter-Efficient Fine-Tuning
23.1 Adapters
2.3.2 Sparse Fine-Tuning

3 Monolingual Setup & Students

3.1 Motivation & Problem Formulation
3.1.1 Measuring Cross-Lingual Representations
3.1.2 Motivation
3.1.3 Problem Formulation
3.2 General-Purpose KD into Monolingual Components

N S e

~N 39

17
20
24
26
26
28
30
36
38
39
40
42

CONTENTS

3.2.1 Monolingual Setup

3.2.2 Distillation Loss

3.2.3 Sharing Across Students
3.2.4 Initialization of Students
3.3 Zero-Shot Fine-Tuning for Monolingual Students
3.3.1 Full Student Fine-Tuning
3.3.2 Freeze Source Student

3.3.3 Adapters . . .
334 BitFit

3.3.5 Sparse Fine-Tuning

3.3.6 Task Distillation

3.4 MonoAlignment & MonoShot

4 Experiments
4.1 Model and Dataset . .
4.2 Experimental Setup . .

4.2.1 General-Purpose Distillation
422 Zero-Shot Downstream Task Fine-tuning
4.2.3 Few-Shot Downstream Task Fine-tuning

43 Results.
4.3.1 Baselines . . .

432 Cross-Lingual Alignment
433 Zero-ShotResults,
434 Few-ShotResults
4.4 Analysis of Downstream Task Performance
4.4.1 Alternative Zero-Shot Fine-Tuning Strategies
442 Alternative Knowledge Distillation Strategies

4.43 Ablation Study
4.4.4 Bilingual Setup

4.5 Analysis of Cross-Lingual Alignment
4.5.1 Alternative Knowledge Distillation Strategies

4.5.2 Ablation Study
4.5.3 Bilingual Setup

5 Conclusion & Future Work

A Program Code / Resources

ii

47
48
50
52
52
52
53
53
54
55
56
56

58
58
61
61
61
62
62
63
64
66
67
68
69
71
74
75
77
77
80
82

83

85

List of Algorithms

1 Distillation Step: Training Procedure for CLKD

iii

List of Figures

1.1

2.1

2.2

23

24

2.5

2.6

2.7

2.8

29

A conceptual view of the NLP resource hierarchy categorised in
availability of task-specific labels and availability of unlabeled language-
specific text. Taken from [Ruder etal.,2019]. 2

A taxonomy for transfer learning for NLP. Given a downstream
task, Cross-Lingual Representation Learning utilizes the joint rep-
resentation space by fine-tuning on a high-resource language to
then use the acquired task knowledge to transfer it to other (low-
resource) languages. Adopted from [Ruder, 2019]. 8
A Recurrent Neural Network (RNN). (Left) Three time-steps are
shown. (Right) The inputs and outputs to a neuron of a RNN. Im-
ages taken from the Stanford CS224n course. 13
Encoder-decoder architecture of an RNN on a machine translation
task. The encoder produces a thought vector C, representing the
source sentence. The decoder then unfolds state C' to produce an

OULPUL SEQUENCE. . « . v v v v e v e e e e e e e e e e 14
An encoder-decoder model for machine translation with added at-

tention mechanism. 15
A transformer encoder block, adopted from Vaswani et al. [2017]. 16

Ilustration of projection-based methods. X and Y are monolin-

gual spaces and W the projection matrix. Adopted from Conneau

etal. [2017]. 18
The BiSkip-gram predicts within language and cross-lingually based

on the alignment information. Image taken from Luong et al. [2015]. 19
Masked Language Modeling task in BERT. Masked tokens get re-
placed with a special token [MASK]. Taken from Torregrossa et al.

[2021]. . . o oo 21
Cross-lingual language model pretraining. Image taken from Lam-
ple and Conneau [2019]. 23

v

LIST OF FIGURES v

2.10

2.11

2.12

2.13

2.14

2.15

3.1
32

33

Trade-off between number of languages in pre-training vs. XNLI
performance. (Left) From 7-15 languages, the model benefits from
positive cross-lingual transfer, but degrades after the curse of mul-
tilingualty kicks in. (Right) Adding more model capacity can alle-
viate some of the curse. Images taken from Conneau et al. [2020]. 25
Given a teacher with 6 layers and a student with 3 layers, we vi-
sualize different mapping functions: (Left) Uniform, (Middle) Top

and (Right)bottom. 32
Visualization of a attention and intermediate hidden representation
distillation. Taken from [Jiao et al., 2020]. 35

Visualization of the distillation strategy of Reimers and Gurevych
[2020]. Given parallel data (here: English and German), the stu-
dent model is trained such that the sentence embeddings for the
English and German sentences are close to the teacher English sen-
tence vector. Adopted from Reimers and Gurevych [2020]. 37
The effect of enlarging the CIFAR-100 distillation dataset with
GAN-generated samples. The shaded region corresponds to p +
o, estimated over three trials. (a) The teacher and student have
the same model capacity. Student fidelity increases as the dataset
grows, but the test accuracy decreases. (b) The teacher has a larger
model capacity than the student. Student fidelity again increases
when the dataset grows, but the test accuracy now also slightly in-
creases. Figure taken from Stanton et al. [2021]. 39
(Left) Proposed placement of the adapter within transformer block:
After feed-forward neural network Pfeiffer et al. [2021]. (Right)
Proposed adapter architecture [Houlsby et al., 2019, Pfeiffer et al.,
2021]. Images are taken from Pfeiffer et al. [2021] and Houlsby
etal. [2019]. 41

Default setting of sharing components across students. 51
Zero-Shot Fine-Tuning Strategies: (Left) Full Fine-tuning (FULL).
(Right) Freezing Source Model with one layer added (FREEZE -

Add 1 Layer). Blue color indicates which components are be-

ing fine-tuned. 53
Zero-Shot Fine-Tuning Strategies: (Left) Task Adapters on the source
model (ARDAPT - SRC). (Right) BitFit on the source model (BitFit

-~ SRC). Blue color indicates which components are being fine-
tuned. L 54

LIST OF FIGURES

3.4 Zero-Shot Fine-Tuning Strategies: Joint training of adapters in
source and target model. The blue color indicates which compo-
nents are being fine-tuned. L. L.

4.1 Comparison of different model sentence representations with the
cosine similarity and the BERTScore for the Tatoeba retrieval task
on the t r—en (top-left), sw—en (top-right), ur—en language pair
(bottom-left) and eu—en language pair (bottom-right).

4.2 (Left) w/o Emb Sharing: Independent Student Models. (Right) w/o
Output Tie: We remove the tying between the MLM head and Em-
bedding Layer. Notice that in the default setting, tying results in
sharing the MLLM head between students.

4.3 Comparison of the alignment of different layer representations with
(left) the cosine similarity and (right) the BERTScore for the Tatoeba
retrieval task on the English-Turkish language pair.

4.4 Visualization of the MLLM task performance for Turkish during dis-
tillation for MonoShot-XLM-Rg and MonoShot-XLM-Rg w/o

Teacher Init. The performance is measured in perplexity. MonoShot-

XLM-Rg w/o Teacher Init is not performing as well as with initial-
izing weights from the teacher.

vi

81

List of Tables

2.1

3.1

4.1

Categorizing of previous works into different transformer parts dis-
tillation during pre-training. Notice that TinyBert does not utilize
soft or hard targets during pre-training, only in their second dis-
tillation stage (task-distillation). Furthermore, we specify the loss
function (KL: Kullback Leibler Loss; MSE: Mean-squared error;
COS: Cosine Embedding Loss; CE: Cross-entropy loss; SVD:
Singular Value Decomposition.

Loss Functions: We categorize the possible distillations of differ-
ent parts of the transformer into: Embedding (Emb), Hidden Layer,
and Output Layer, see Section 2.2.3 for more details. The distilla-
tion name is constructed from two parts: The first part is the dis-
tillation loss name (see Section 3.2.2), and the second part, which
is denoted in brackets, is the mapping strategy (see Section 2.2.3).
The top part of the table denotes the different distillation losses that
we study based on the uniform mapping strategy. Additionally, we
study the cosine loss function to align hidden representations. The
bottom part denotes the study of different mapping strategies based
on the Hinton+Hidysg +ATTysg+Embysg loss.

Downstream Tasks and their characteristics. For NER, sizes are
in sentences. Struct. pred.: structured prediction. Sent. retrieval:
sentence retrieval. Adopted from Hu et al. [2020].

4.2 Hyperparameters of each training stage.

vii

LIST OF TABLES

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

We report the accuracy of the retrieval task on the test set of Tatoeba
(XTREME) based on the similarity scores BERTScore and Cosine
Similarity. We average across language pairs in column Average
for each similarity score. The bold numbers in the upper table in-
dicate the best accuracy for the baselines in each language pair for
each similarity score. The bold numbers in the bottom table indi-
cate if our approach outperforms the best baseline in the respective
language pair and similarity score.
Results on XNLI, NER, and XCOPA for different Knowledge Dis-
tillation strategies target languages {¢r, sw} on the dev set. The
best results across 6 layer models are in-bold. In column Average,
we average across all downstream tasks and languages.
We report the few-shot performance of the selected baselines and
MonoShot on the test set for Turkish (fop) and Swahili (bottom).
Bold numbers indicate the best performing 6 layer model.
Results on XNLI, NER and XCOPA for different zero-shot fine-
tuning strategies coupled with the distillation strategy of MonoShot
on Turkish (Top Half Table) and Swahili (Bottom Half Ta-
ble) reported on the dev set. The best results across all fine-tuning
strategies are in-bold. We average across the target languages and
downstream tasks. Our proposed method MonoShot deploys the
FULL (TRG) strategy.« . v v v v v v i v oo
We report on the dev set of XNLI, NER, and XCOPA for different
Knowledge Distillation strategies in the target languages {¢r, sw}.
The best results across all distillation strategies are in-bold. In
column AVG, we average across downstream tasks and target lan-
GUAZES. © v e e e e e e e e e e e e e e e
Ablation study on embedding sharing, teacher initialization and
output tying. We report results on the dev set of XNLI, NER,
XCOPA for the target languages {tr, sw}.
Results on the dev set of XNLI, NER, and XCOPA for different
Knowledge Distillation strategies on the target languages {¢r, sw}.
The best results across all distillation strategies are in-bold. In
column AVG, we average across downstream tasks and target lan-
QUAZES. .« . e e e e e e e e e e e e
We report the best performing bilingual setup (selected via the dev
set) with the teacher on the test set of XNLI, NER, and XCOPA
with the target languages {¢r, sw}. The best results across methods
are in-bold. In the column Average, we average across all down-
stream tasks and languages.

viii

64

66

LIST OF TABLES

4.11

4.12

4.13

First, we report the average downstream task performance (XNLI,
NER, and XCOPA) across languages on the dev set. We then state
the accuracy based on the BERTScore and Cosine Similarity on
the test set of Tatoeba (XTREME). We average across languages
in column AVG for each similarity score. Bold numbers indicate
the best performing strategy for each language pair and similarity
SCOTE. « v v v v i ittt e e e e e e e e e
Ablation study on embedding sharing, teacher initialization and
output tying. We report results on the retrieval task on Tatoeba
for the languages tr — en and sw — en. We average across
languages in column Average for each similarity score. Bold
numbers indicate the best performing strategy for each language
pair and similarity score.
First, we report the average downstream task performance (XNLI,
NER, and XCOPA) across languages on the dev set. We then state
the accuracy based on the BERTScore and Cosine Similarity on
the test set of Tatoeba (XTREME). We average across languages
in column Average for each similarity score. Bold numbers in-
dicate the best performing strategy for each language pair and sim-
ilarity score.

X

Chapter 1

Introduction

1.1 Motivation

Natural language processing (NLP) has made significant progress in recent years,
achieving impressive performances across diverse tasks. However, these advances
are focused on just a tiny fraction of the 7000 languages in the world, e.g., En-
glish, where sufficient amounts of text in the respective language are available
(high-resource languages). Nevertheless, when the situation arises where text data
in a language is scarce, language technologies fail. These languages are called
low-resource languages, e.g., Swahili, Basque, or Urdu; see Figure 1.1 for a more
apparent distinction between high-, mid-, and low-resource languages. This leaves
low-resource languages and, therefore, most languages understudied, which fur-
ther increases the digital language divide! on a technological level. Being able
to develop technologies for low-resource languages is vital for scientific, social,
and economic reasons, e.g., Africa and India are the hosts of around 2000 low-
resource languages and are home to more than 2.5 billion inhabitants [Magueresse
et al., 2020]. ”Opening” the newest NLP technologies for low-resource languages
can help bridge the gap, e.g., digital assistants, or help reduce the discrimination
against speakers of non-English languages [Tatman, 2017, Rabinovich et al., 2018,
Zhiltsova et al., 2019].

To improve language technologies for low-resource languages, the field of
Cross-Lingual Representation Learning is focused on creating high-quality repre-
sentations for these languages by gaining benefit from abundant data in another lan-
guage via a shared representation space. As static word representations gained in
popularity, many multilingual embedding methods have been presented [Mikolov
et al., 2013b, Hermann and Blunsom, 2014, Hu et al., 2020]. The idea behind these

1http ://labs.theguardian.com/digital-language-divide/

http://labs.theguardian.com/digital-language-divide/

CHAPTER 1. INTRODUCTION 2

High-resource

100s of millions of documents online, NLP research has mostly
large labelled datasets, large Wikipedia focused on these

English, major world languages

Medium-resource \

Few labelled data, millions to
100,000s of online documents,
parallel data, medium size Wiki
Most European languages, large official
languages >
Low-resource

No labelled data, few
data online, small or
no Wikipedia

Most languages in the world J

Need to apply NLP to
these

Figure 1.1: A conceptual view of the NLP resource hierarchy categorised in avail-
ability of task-specific labels and availability of unlabeled language-specific text.
Taken from [Ruder et al., 2019].

methods is to induce embeddings” such that the embeddings for two languages are
aligned, i.e., word translations, e.g., cat and Katze, have similar representations.
Recently, however, large pre-trained language models, the so-called transformer
models, took static word embedding methods over in virtually every aspect, partly
because these models induce context-dependent word representations, capturing
the rich meaning of a word better [Peters et al., 2018, Howard and Ruder, 2018,
Radford and Narasimhan, 2018, Devlin et al., 2019]. E.g., mBERT and XLM-R,
transformer-based multilingual masked language models pre-trained on text in (ap-
proximately) 100 languages, can obtain impressive performances for a variety of
cross-lingual transfer tasks [Pires et al., 2019, Conneau et al., 2020]. Even though
these models were not trained with any cross-lingual objectives, they still pro-
duce representations that can generalize well across languages for a wide range of
downstream tasks [Wu and Dredze, 2019, Conneau et al., 2020]. To analyze the
cross-lingual transfer ability of multilingual models, the model is first fine-tuned
on annotated data of a downstream task and then evaluated in the zero or few-shot
scenario, i.e., evaluated with the fine-tuned models in the target language [Hu et al.,
2020] with no or few additional labeled target language data.

As impressive as these multilingual transformers might seem, low-resource
languages still perform sub-par to high-resource languages [Wu and Dredze, 2019,
Conneau et al., 2020], partly due to the fact of a smaller pre-training corpus [Con-
neau et al., 2020], the curse of multilinguality [Conneau et al., 2020] and the im-
portance of vocabulary curation and size [Chung et al., 2020, Artetxe et al., 2020].
E.g., the curse of multilinguality argues assuming that the model capacity stays

2Word embeddings and word representation are interchangeable in our thesis.

CHAPTER 1. INTRODUCTION 3

constant that adding more languages leads to better cross-lingual performance on
low-resource languages up until a point where the overall performance on mono-
lingual and cross-lingual benchmarks degrades. Intuitively explained, adding more
languages to the model has two effects: (1) Positive cross-lingual transfer, espe-
cially for low-resource languages, and (2) lower per-language capacity, which then,
in turn, can degrade the overall model performance. These two effects of capacity
dilution and positive transfer need to be carefully traded against each other. The
model either needs to have a large model capacity® or is specialized (constrained)
towards a subset of languages beforehand. For these reasons, it is hard to create a
single model that can effectively represent a diverse set of languages. One solution
is to create language-specific models (monolingual models) with language-specific
vocabulary and model parameters [Virtanen et al., 2019, Antoun et al., 2020], but
in return, monolingual models need enough text to pre-train the model on the lan-
guage modeling task, which is typically not available for low-resource languages.
Additionally, we can not benefit from any cross-lingual transfer from related lan-
guages, making it harder to create an adequate representation for low-resource lan-
guages [Pires et al., 2019, Lauscher et al., 2020].

1.2 Research Objective & Contribution

In this thesis, we explore how one can alleviate the issues of big multilingual trans-
formers for low-resource languages, especially the curse of multilinguality, see
previous Section 1.1. Specifically, our two main objectives are: (1) Improving
the cross-lingual alignment for low-resource languages and (2) improving cross-
lingual downstream task performance for low-resource languages. We utilize Knowl-
edge Distillation (KD) by distilling the multilingual model into language-specialized
(also called monolingual) language models. We make the following contributions:

* We propose a novel setup to distill multilingual transformers into mono-
lingual components. Based on the setup, we propose two KD strategies:
One for improving the alignment between two languages and one to improve
cross-lingual downstream task performance. We call the former MonoAlignment
and the latter MonoShot.

* MonoAlignment uses a distillation strategy to distill multilingual trans-
former models into smaller monolingual components which have an im-
proved aligned representation space between a high-resource language and a
low-resource language. We demonstrate the effectiveness by distilling XLM-

3Here: Measured in the number of free parameters in the model.

CHAPTER 1. INTRODUCTION 4

R and experimenting with aligning English with Turkish, Swahili, Urdu, and
Basque.

* We compare MonoAlignment to other Knowledge Distillation strategies
showing that it outperforms them in the retrieval task for low-resource lan-
guages.

* Our work suggests that an increase in the cross-lingual alignment of a mul-
tilingual transformer model does not necessarily translate into an increase in
cross-lingual downstream task performance.

* Therefore, we propose MonoShot, another Knowledge Distillation strategy
to distill multilingual transformer models into smaller monolingual compo-
nents but which have a strong cross-lingual downstream performance in the
zero- and few-shot settings.

* We show that MonoShot performs best among many different Knowledge
Distillation strategies, albeit still lacks behind the teacher performance. How-
ever, it outperforms models built upon the teacher architecture but is trimmed
down to the same size as the distilled components and initialized from parts
of the teacher.

* We demonstrate an effective fine-tuning strategy for the zero-shot scenario
for aligned monolingual models and compare it against many other strate-
gies.

To conduct our research, we will draw inspiration from the field of Cross-Lingual
Representation Learning, Knowledge Distillation, and Parameter-Efficient Fine-
tuning. Following different Knowledge Distillation strategies, such as from Distil-
Bert [Sanh et al., 2020] or TinyBert [Jiao et al., 2020], we distill the aligned cross-
lingual representation space of the multilingual transformer model XLM-R [Con-
neau et al., 2017] into smaller monolingual students. To fine-tune aligned mono-
lingual models in a zero-shot scenario, we study the field of parameter-efficient
fine-tuning, i.e., Adapters [Houlsby et al., 2019, Pfeiffer et al., 2021], BitFit [Za-
ken et al., 2021] and Sparse Fine-Tuning [Guo et al., 2020]. Finally, we evaluate
the general-purpose cross-lingual representation of our monolingual models in the
retrieval, classification, structured prediction, and question-answering task.

1.3 Thesis Structure

The thesis is divided into five chapters: Chapter 2 provides the preliminaries and
our review of related literature. Specifically, we explore the history of Cross-

CHAPTER 1. INTRODUCTION 5

Lingual Representation Learning, study current state-of-the-art methods and their
limitations. Next, we give an overview of Knowledge Distillation methods in
NLP and structure relevant methods by categorizing them into which parts of the
model architecture they distill from. Since we introduce a novel distillation setup
to induce aligned monolingual students, we explore related distillation setups to
create multilingual students. Finally, we briefly explore parameter-efficient fine-
tuning methods. In Chapter 3, we motivate and explain our proposed monolingual
setup, detail our training procedure, and outline different KD losses and zero-shot
fine-tuning approaches for our monolingual setup. We then explain which loss
and zero-shot fine-tuning approach our final proposed methods MonoAlignment
and MonoShot utilize. In Chapter 4, we provide experimental results of our ap-
proaches and compare them to relevant baselines. Subsequently, we analyze dif-
ferent aspects of our approaches based on further experiments. Finally, Chapter 5
concludes our work and discusses various future works.

Chapter 2

Preliminaries & Related Work

In this chapter, we will motivate and explore the history & current state-of-the-
art as well as challenges of Cross-Lingual Representation Learning (Section 2.1).
Additionally, we discuss the origin of Knowledge Distillation and the recent devel-
opments in the context of NLP (Section 2.2). As we will utilize techniques from the
field of parameter-efficient fine-tuning to later fine-tune our monolingual students
on a downstream task, we will briefly discuss some relevant methods in Section
2.3.

In Section 2.1.1, we explain why Cross-Lingual Representation Learning is
needed in today’s age and motivate why we can leverage shared knowledge across
languages. As word representations are the basis of Cross-Lingual Representa-
tion Learning and modern NLP, we explore the concept of word representations
(Section 2.1.2), give a brief history of architectures to construct these representa-
tions (Section 2.1.3), discuss cross-lingual word representations (Section 2.1.4 and
2.1.5) and analyze current challenges in multilingual transformers (Section 2.1.6),
the state of the art in cross-lingual representations. In the next Section 2.2 we
discuss various aspects of Knowledge Distillation, specifically in Section 2.2.1 we
discuss why Knowledge Distillation is important and how the ”vanilla” Knowledge
Distillation setup is constructed. We then discuss Knowledge Distillation in the
context of NLP (Section 2.2.2) and give an overview of recent relevant approaches
by categorizing them into which parts of the transformer they distill from (Section
2.2.3). As our thesis utilizes a novel distillation setup to induce aligned mono-
lingual students, we analyze different distillation setups to induce multilingual stu-
dents in Section 2.2.4. Subsequently, we discuss challenges in KD in Section 2.2.5.
In the final Section 2.3, we will discuss parameter-efficient fine-tuning techniques
such as Adapters (Section 2.3.1) and Sparse-Fine-Tuning (Section 2.3.2), specifi-
cally Diff-Pruning and BitFit.

CHAPTER 2. PRELIMINARIES & RELATED WORK 7

2.1 Cross-Lingual Representation Learning

In this section, we will explore Cross-Lingual Representation Learning by first
motivating the approach (Section 2.1.1) and exploring the concept of word rep-
resentations (Section 2.1.2). As modern NLP and Cross-Lingual Representation
Learning are based on word representations, we thoroughly explore the history of
architectures to construct these (Section 2.1.3). Finally, we briefly outline static
cross-lingual word representation approaches (Section 2.1.4) and discuss contex-
tualized cross-lingual word representation approaches more in-depth as they cur-
rently are the state-of-the-art and the basis of this thesis (Section 2.1.5).

2.1.1 Motivation

The latest NLP technology relies on pre-training on massive amounts of text in the
respective language in an unsupervised fashion, producing fixed-size sequence or
word representations that can be used to fine-tune on a task with sufficient labeled
data. In most cases, both data sources are needed to meet the performance of state-
of-the-art NLP approaches. However, the lack of both data sources will highly de-
grade the performance of these methods, posing a fundamental problem in scaling
low-resource languages. Cross-lingual representation techniques try to alleviate
the issue of data scarcity for low-resource languages by inducing an aligned repre-
sentation across languages, i.e., language-agnostic language representations. The
idea is to transfer lexical, syntactic, and semantic knowledge across languages that
can be used for cross-lingual downstream tasks. This gives rise to two advantages:
(1) Transferring lexical knowledge across languages enables us to reason about the
semantics of words in multilingual contexts and is a vital source of knowledge for
multilingual systems such as machine translation [Artetxe et al., 2017, Qi et al.,
2018, Lample et al., 2018], multilingual search, and question answering [Vuli¢ and
Moens, 2015]. (2) More importantly, given a downstream task, models can uti-
lize the joint representation space by training on a high-resource language such
as English, where labeled data exists, to then use the acquired task knowledge to
transfer it to other (low-resource) languages. The hope is that the model can gen-
eralize lexical properties and relations across languages [Plath, 2002]. Ultimately,
cross-Lingual representations can also be seen as a type of transfer learning which
can help us understand why transferring knowledge across languages works.

Relation to Transfer Learning. Transfer Learning is a sub-field in Machine
Learning that focuses on reusing the acquired knowledge from past related tasks
to help the learning process of solving a new task. Cross-Lingual Representa-
tion Learning, therefore, is a type of transfer learning, specifically similar to do-
main adaption; see Figure 2.1 for a taxonomy of transfer learning in NLP. Viewing

CHAPTER 2. PRELIMINARIES & RELATED WORK 8

Domain

adaptation
Different domains L

Transductive

Same task: transfer learning

labeled data .
. Different languages "
only in source Cross-lingual

domain learning

Transfer

learning

Different tasks; Multi-task
labeled data Tasks learned learning

in target simultaneously

domain

Inductive

transfer learning

Tasks learned

sequentially Sequential

transfer learning

Figure 2.1: A taxonomy for transfer learning for NLP. Given a downstream task,
Cross-Lingual Representation Learning utilizes the joint representation space by
fine-tuning on a high-resource language to then use the acquired task knowledge to
transfer it to other (low-resource) languages. Adopted from [Ruder, 2019].

cross-lingual representation as a form of transfer learning can help us understand
in which cases knowledge from one to another language can be transferred:

1. Transfer Learning works well when the underlying structures are similar to
each other. Languages share many aspects on many different levels, e.g.,
on a lexical level, languages can incorporate words from another language
(loanwords) and have words from the same origin (cognate). On a syntac-
tical level, languages might have a similar structure of sentences, and on a
semantic level languages, languages are built upon a so-called natural se-
mantic metalanguage, see Goddard [2006] for a more in-depth analysis.

2. Transfer Learning fails when the source and target settings are vastly differ-
ent. In our cross-lingual setting, transferring any knowledge from languages
that are not related in any way is hard, i.e., languages that are not typologi-
cally or etymologically related.

In summary, languages must be in some way related; otherwise, we can not
transfer knowledge across languages. Languages in the same language family share
much more than unrelated languages. This is also reflected in the performance of
cross-lingual methods [Lample and Conneau, 2019, Lauscher et al., 2020]. Fur-
thermore, even when languages come from different language families, Goddard

CHAPTER 2. PRELIMINARIES & RELATED WORK 9

[2006] argues that, on a semantic level, languages are built upon a natural semantic
metalanguage, therefore, share a connection.

2.1.2 Constructing Word Representations

The question remains how one can exploit shared structures across languages to
build a cross-lingual representation. As word representations, i.e., words repre-
sented as real-valued vectors, are the basis of modern NLP and cross-lingual rep-
resentations, we first discuss different approaches to built word representations.

Bag-of-Words. The simplest solution to represent words in a vector form is to
use the bag-of-words approach, which describes the occurrence of words within a
document. However, the bag-of-word approach has major problems such as losing
information about word order and semantics, being highly dimensional (curse of
dimensionality), and can not represent out-of-vocabulary tokens.

Distributed Word Representation. To improve upon bag-of-words, distributed
word representations were utilized, which represent words (or more generally, to-
kens') as distributed representations of lower dimensionality, trained to capture
syntactic and semantic relationships between words. The approach is motivated by
the underlying idea that a word is characterized by the company it keeps”, called
the distributional hypothesis [Harris, 1954]. This means that words that occur in
the same context are semantically related. The general approach to generating dis-
tributed word embeddings is by computing word co-occurrence statistics based on
unlabeled free text (unsupervised).

Language Models. The most prominent way to make use of the distributional
hypothesis to create distributed word representations is by using language models
(LMs), which is the backbone of modern NLP. LMs first gained momentum when
Collobert and Weston [2008] showed the effectiveness of applying neural models
to language modeling to create semantic word embeddings for downstream tasks.
It was the start point of the modern approach to NLP: Pre-train neural models
to create word representations for downstream tasks. Formally, an LM, given a
sequence of tokens {t1, ..., t,,} with length m, outputs a probability distribution
over the sequence of tokens, i.e., the likelihood of the tokens occurring jointly:

'A tokenizer splits the text into smaller units called tokens. Tokens can be words, characters, or
subwords. In our thesis, we mostly use the term word representations to illustrate concepts better.
Only when necessary do we explicitly state tokens. Nevertheless, all presented approaches can be
generalized to any token-level.

CHAPTER 2. PRELIMINARIES & RELATED WORK 10

m

P(ty) - P(taltr) - ... P(tmltr, oo tm—1) = [[P(tiltii-1)-
i=1

(chain rule)

The chain rule allows us to calculate the joint probability of the tokens in the se-
quence as conditional probabilities of a token given their respective previous to-
kens. Even then, this becomes quickly intractable due to combinatorial explo-
sion of the possible number of previous tokens. To avoid this problem, typically
we leverage the Markov assumption, i.e., it is assumed that the probability of
P(tml|t1,...,tm—1) depends only on the previous n — 1 << m tokens:

P(tm|t1, ...,tmfl) ~ P(tm|tm—(n—1)> ...,tmfl)

m
== P(t1,....tm) = Hp(ti|ti—(n—l):i—1)'
i—1

As the joint probability of tokens now only depend on the product of probabilities
of the form

P(tilti—(n—1)s - ti-1),

called n-grams, we need to estimate the n-grams which can be done with the max-
imum likelihood estimate (MLE) on the training corpus. In practice, models are
trained to either predict the subsequent tokens (directional) or to predict the miss-
ing token given the surrounding context of the word (bidirectional).

To evaluate the performance of a language model, the usual metric is the Per-
plexity [Jelinek et al., 1977], which is defined as the inverse probability of se-
quences on a validation set normalized by the number of tokens:

1 (chain rule) 1
PP(t1,.cotm-1) = /= = 7% '
(t1; s tm1) \/P(tl,tg,...,tm) \/H?ilp(ti“itil)

A lower perplexity indicates a better model.
The following subsection will explore different model architectures that utilize
language modeling to create powerful word embeddings.

2.1.3 Evolution of Architectures

We outline the evolution of (neural) architectures in NLP to induce strong word
representations that can be utilized for downstream tasks, such as Natural Language

CHAPTER 2. PRELIMINARIES & RELATED WORK 11

Understanding. For now, we restrict ourselves to inducing monolingual word rep-
resentations using the language modeling task on monolingual text corpus.

Feedforward Neural Networks. Mikolov et al. [2013a,b] introduce an efficient
way of learning high-quality word vectors for millions of words in the vocabulary
from a large amount of unlabeled text data in an unsupervised fashion. The released
word embeddings not only capture semantic and syntactic information but also
learn relationships between words?, e.g., Paris - France + Italy = Rome. They dub
their approach word2vec and give two novel model architectures: Skip-Gram (SG)
and Continuous Bag-of-Words (CBOW).

Both CBOW and SG architectures are based on a simple feedforward neural
network. The CBOW method computes the probability of the current token based
on the context tokens within a window W of k neighboring tokens. On the other
hand, the SG computes the probability of surrounding tokens within a window W
of k neighboring tokens given the current token. The network encodes each token
t; into a center token e; and context token c¢; which correspond to the ¢—th row of
the center token matrix E!V1*¢ and context token matrix E!VI*9, where the V is
the size of the vocabulary and d the token vector embedding size. Given a center
token ¢, SG estimates the likelihood of seeing a context token w conditioned on the
given center token with the softmax function:

exp etTcw
N T
>V expefc

where e; denote the embedding for the center token ¢ and c,, the embedding for
the context token w in the window ¢,, € W. Given a text corpus {1, ...,t7} of
length T and assuming that the context words are independently generated given
any center word, we learn the model parameters (token embeddings) by maximiz-
ing the likelihood function over the text corpus which is eqivalent to minimizing
the negative log-likelihood:

P(cwler) = ; 2.1)

T T
max [] Plewler) & min—3 " > " log (Peuler). (22)

t=1weW; t=1 weW

For a downstream task, the final embedding for token ¢ is either the center token
or calculated as the element-wise average or the sum of its center and context rep-
resentations. Therefore, the word2vec objective in Equation (2.2) directly uses the
language modeling task to generate effective word embeddings.

Relationships are defined by subtracting two words vectors, and the result is added to another
word.

CHAPTER 2. PRELIMINARIES & RELATED WORK 12

Even though word2vec is very effective in creating powerful word representa-
tions, there are some considerable drawbacks: First, the denominator in Equation
(2.1) sums over the entire vocabulary, slowing down the calculating of the softmax.
There are some approaches such as hierarchical softmax and negative sampling to
overcome this [Mikolov et al., 2013b]. Still, there are two major conceptually
disadvantages of word2vec representations: First, they can not embed any tokens
outside the vocabulary, and second, they do not account for the linguistic morphol-
ogy of a word, e.g., the representations of eat” and “eaten” are learned separately
(no parameter-sharing) based on its context they appear on.

To solve the above issues, Bojanowski et al. [2016] introduce FastText, a new
embedding method. FastText extends the idea of word2vec by using the internal
structure of a word to improve the word representations of word2vec. Instead of
constructing representations for words, FastText learns representations for n-grams
of characters which are then used to build word representations by summing the
bag-of-character n-grams up. E.g., for n = 3, the word “artificial” is represented
by <ar, art, rti, tif, ifi, fic, ici, ial, al> where the angular brackets indicate the
beginning and end of the word. This allows us to better represent and capture the
meaning of suffixes and prefixes. Furthermore, words that do not appear during
training can be represented by breaking the word into n-grams to get its represen-
tation.

The released representations of FastText and word2vec became famous be-
cause of their ease of use and effectiveness in a variety of NLP problems [Lample
et al., 2016, Kiros et al., 2015, Kusner et al., 2015]. Furthermore, these (monolin-
gual) representations can be used to construct a cross-lingual representation space
by mapping representations of multiple languages into a shared space (see Section
2.1.4).

However, word2vec and FastText have several drawbacks: Each word has a
static word representation. Consequently, both methods can not correctly capture
phrases and polysemy of words. Furthermore, during training, we only consider
the context of a word, leading to a similar representation of a word and its anatomy
since both appear in a similar context. Another drawback is that we only consider a
fixed-size window of context words for conditioning the language model. A more
natural way to learn representation is to allow a variable amount of context words.

Recurrent Neural Network (RNN). A RNN is a class of artificial neural networks
that are specialized to process sequential data, e.g., natural language text. RNNs are
capable of conditioning the model to an arbitrary number of words in the sequence.
Figure 2.2 depicts the architecture of an uni-directional RNN where each vertical
box is a hidden layer at a time-step ¢. At each time step ¢, the hidden layer gets
two inputs: the output of the previous layer h;_; and the input at that time-step z,

CHAPTER 2. PRELIMINARIES & RELATED WORK 13

(e0ee] [(eeee] (ecee) @

Figure 2.2: A Recurrent Neural Network (RNN). (Left) Three time-steps are
shown. (Right) The inputs and outputs to a neuron of a RNN. Images taken from
the Stanford CS224n course.

see Figure 2.2 (right). To produce the output features h; and to obtain a prediction
output § of the next word, we utilize the weight matrices W) 17 (he) 117(5) a5
follows:

B = (WODh, g+ W0y,)

7y = softmax (W(S) ht)

Notice that the weights W k) W (he) are applied repeatedly at each time step,
therefore sharing the weights across time steps. This allows the model to process
sequences of arbitrary length. Furthermore, the model size does not increase with
longer input sequences. In theory, RNNs can use information from any steps from
the past. However, in practice, this is difficult as the vanishing and exploding gra-
dients become a big issue with long sequences [Hochreiter, 1998, Bengio et al.,
1994] which then makes the model insensitive to past inputs. To alleviate these
issues, we mention some heuristic solutions: Clipping the gradient to a small num-
ber whenever they explode [Pascanu et al., 2012], initialization of W (*") as the
identity matrix since it helps avoid the vanishing gradients [Le et al., 2015] and
using the Rectified Linear Units (ReLU) instead of the sigmoid function [Agarap,
2018]. However, one of the most important extensions to solve the vanishing gra-
dient problem is the so-called long-short term memory (LSTM) [Hochreiter and
Schmidhuber, 1997, Gers et al., 2000], which is a sub-architecture for the hidden
layer of an RNN. The LSTM unit introduces a gating mechanism that selectively
propagates only a subset of relevant information across time steps and consequently
mitigates the vanishing gradient problem.

RNNs and LSTMs started to dominate NLP, either performing competitively
or outperforming existing state-of-the-art on various tasks [Sutskever et al., 2011,

CHAPTER 2. PRELIMINARIES & RELATED WORK 14

Amo el aprendizaje <end>

sooo

l

<start> Amo el aprendizaje

Decoder
Encoder

bbb

<start> | love learning <end>

Figure 2.3: Encoder-decoder architecture of an RNN on a machine translation task.
The encoder produces a thought vector C, representing the source sentence. The
decoder then unfolds state C' to produce an output sequence.

Mikolov et al., 2011, Sutskever et al., 2014]. One particular interesting architec-
ture emerged to address tasks where a output sequence was needed such as machine
translation: The encoder-decoder architecture. The architecture was first proposed
by Hinton and Zemel [1993] and was then later used in the context of NLP [Kalch-
brenner and Blunsom, 2013, Sutskever et al., 2014], see Figure 2.33. The encoder
part takes a sequence as an input and outputs a single vectorized representation of
the whole sequence (called thought vector), which the decoder takes as an input to
generate a sequence.

However, since the thought vector has a fixed size representation form, and the
decoder only depends on the thought vector, the representative power of the (uni-
directional) RNN encoder-decoder architecture for sequences is naturally limited.
All the information about the input has to be encoded into the fixed-size thought
vector, which becomes increasingly difficult for long sequences.

Attention. To improve upon the above described shortcoming of encoder-decoders,
Bahdanau et al. [2014] introduces the concept of attention. The attention module
allows the decoder to re-access and select encoder hidden states at decoding time,
see Figure 2.4*. Following the numbers in the Figure 2.4, the attention module can
be explained by the following: (1) The decoder’s hidden state and (2) the inter-
mediate hidden states of the encoder are being fed into the attention module. (3)

3Figure taken from https://www.baeldung.com/cs/
nlp—-encoder—-decoder—-models

*Figure taken from https://project-archive.inf.ed.ac.uk/ug4/20201880/
ug4_proj.pdf

https://www.baeldung.com/cs/nlp-encoder-decoder-models
https://www.baeldung.com/cs/nlp-encoder-decoder-models
https://project-archive.inf.ed.ac.uk/ug4/20201880/ug4_proj.pdf
https://project-archive.inf.ed.ac.uk/ug4/20201880/ug4_proj.pdf

CHAPTER 2. PRELIMINARIES & RELATED WORK 15

r
X 3
attention

"eomo"

encoder decoder’

"how" "are "yon" cstart=> = =<4

Figure 2.4: An encoder-decoder model for machine translation with added atten-
tion mechanism.

The attention module then selects relevant information from the hidden states of
the encoder based on the decoder’s hidden state and calculates the context vector.
Finally, (4) the decoder takes the context vector and the last output word (’cémo”
as the input and outputs the next word. Galassi et al. [2021] gives an exhaustive
overview of different attention implementations. However, we restrict ourselves
to the common attention mechanism used in transformers, explained in the next
paragraph.

First, the decoder state hp € R'*? is embed to a query ¢ € R'*% using a
learnable weight matrix W € R4 dk:

q=hpWy
and each encoder state hg), where ¢ denotes the encoder time-step, is stacked to a

encoder state matrix H g and is used to produce the key matrix K and value matrix
V:

K=HgWg, V =HgWy,

where Wi € R¥d Wy, € R4 are learnable weights. We then calculate the
attention weights which computes how relevant a single key k(*) vector is for the

query gq:
w=qgK".

Commonly, the weights are normalized to a probability distribution using the soft-
max function which are then used to create the context vector c by taking the

CHAPTER 2. PRELIMINARIES & RELATED WORK 16

Add &
Layer Norm

Linear

Nx

Add &
Layer Norm

Multi-Head
Attention

]

Positional _9
Encoding
okenization &
Embedding

Hello I love you

Figure 2.5: A transformer encoder block, adopted from Vaswani et al. [2017].

weighted average of the values:

c= Z v where ' = softmax(w);.

During training, we optimize the weights W, Wi, Wy, which then improves the
selective focus of the attention module. We can summarize the (dot-product) At-
tention with:

Attention(Q, K, V) = softmax (QK™) V. (2.3)

Notice that we extended the vector query to a matrix query () where each row
represents one query vector.

Transformers. Even though attention solves the issue of restrictive expressiveness,
RNNs have another main architectural drawback: RNNs are slow since they are
sequential and therefore hard to parallelize. A new model architecture based solely
on attention mechanisms and fully parallelised was proposed by Vaswani et al.
[2017], called Transformers, an encoder-decoder model. In this thesis, our models
only rely on the encoder part of the model, which is why we omit the description
of the decoder. We visualize the architecture of the encoder in Figure 2.5.

First, the sequence is tokenized, then the model embeds each token in the
input sequence with a token embedding layer, then adds a positional encoding’
depending on the position of the token in the sequence. These representations

5Notice that without the positional encoding, the transformer has no notion of word order.

CHAPTER 2. PRELIMINARIES & RELATED WORK 17

are then routed N times through separate (self-)attention and feedforward sub-
networks. The core difference between the attention module described above and
self-attention is that the query matrix @ is generated from tokens of the input se-
quence and can attend to all other tokens of the same sequence, including itself,
to generate its new representation. Furthermore, they do not use the dot-product
attention (2.3) but the scaled dot-product attention:

. QK™
Attention(Q, K, V') = softmax < > V. 2.4)

vy,
Additionally they utilize multiple heads (multiple self-attention layers), which split
the queries, keys, and values matrices @), K,V along the embedding dimensions
with d = d, = d/h where h is the number of heads. Subsequently, they apply
the self-attention independently, each having its own parameters. The advantage
of multi-heads is that tokens can jointly attend to multiple tokens in the sequence.
Each head produces its own output and gets concatenated, once again projected,

resulting in the final values

MultiHead(Q, V, K') = Concat(heady, ..., headh)WO (2.5)

where WO € RMvxd is the projection matrix. Finally, the result is fed into a
feedforward neural network. Additionally, the architecture uses dropout, residual
connections, and layer normalization to stabilize and improve training.

Using the transformer architecture has improved upon RNNs in many ways:
Through multi-heads, the total computational complexity per layer is much lower,
and through their ability to parallelize many computations, the scalability of trans-
formers far exceeds RNNs. Therefore, stacking transformer blocks to increase the
representative model capacity can be done efficiently. Furthermore, the path length
between long-range dependencies in the network is reduced from O(n) to O(1) as
self-attention allows access to the input directly.

Another critical aspect of transformers is the pre-training and fine-tuning paradigm:
The general procedure is to pre-train on a language modeling task on huge training
text, which is possible because of the high parallelizability of transformers, e.g.,
Radford and Narasimhan [2018] train on the next word prediction task on a cor-
pus with over 7000 books. Given a downstream task, the whole pre-trained model
(coupled with a task head) is then fine-tuned on the task dataset.

2.1.4 Cross-Lingual Static Word Representations

In the previous Section 2.1.3, we outlined different architectures to induce word
representations. However, we restricted ourselves to inducing monolingual word

CHAPTER 2. PRELIMINARIES & RELATED WORK 18

Cat

deep

Figure 2.6: Illustration of projection-based methods. X and Y are monolingual
spaces and W the projection matrix. Adopted from Conneau et al. [2017].

representations by pre-training on monolingual text corpora (with the language
modeling task, i.e., predicting the next word). Since monolingual word embed-
dings pre-train in each language independently, therefore only learning monolin-
gual distributional information, they can not capture semantic relations between
words across languages. The fundamental idea behind cross-lingual word represen-
tations is to create an aligned representation space for word representations from
across multiple languages. This section briefly discusses how to extend static word
embeddings (induced by, e.g., word2vec and FastText) to create a cross-lingual
space.

FastText and word2vec induce static word embeddings, i.e., they do not con-
sider the context of a word in their representation. Therefore phrases and polysemy
of words can not be correctly captured, which prohibits the effectiveness of an
aligned space across languages with static embeddings. Nonetheless, we discuss
two popular approaches: (1) Projection-based models and (2) Bilingual Embed-
dings.

Projection-based methods. Projection-based methods rely on independently trained
monolingual word vector spaces in the source language X and target language
X2, that post-hoc align the monolingual spaces into one cross-lingual word em-
bedding X ¢, see Figure 2.6. The alignment is based on word translation pairs D,
which can be obtained by existing dictionaries or by inducing it automatically. The
former is a supervised method and the latter an unsupervised approach that usually
assumes (approximately) isomorphism between monolingual spaces. Typically, a
supervised projection-based method uses a pre-obtained dictionary D containing
word pairs for finding the alignment [Mikolov et al., 2013b, Huang et al., 2015].
Unsupervised methods induce the dictionary using different strategies such as ad-
versarial learning [Conneau et al., 2017], similarity-based heuristics [Artetxe et al.,
2018], PCA [Hoshen and Wolf, 2018], and optimal transport [Alvarez-Melis and
Jaakkola, 2018].

CHAPTER 2. PRELIMINARIES & RELATED WORK 19

NS Y

moderness wirtschaftliches Handels- und Finanzzentrum

RS
‘\ /’
modern economic trade and financial center

SN AA 4 A

Figure 2.7: The BiSkip-gram predicts within language and cross-lingually based
on the alignment information. Image taken from Luong et al. [2015].

Projection-based methods construct an aligned monolingual subspace X g and
X, where the aligned rows are translations of each other. Mikolov et al. [2013b]
learns the projection Wp 1, by minimizing the Euclidean distance between the lin-
ear projection of X g onto X7:

Wiy = argmin | XsW — X

which can be further improved by constraining W7, to be an orthogonal matrix
Xing et al. [2015].

The induced cross-lingual space performs well for related languages on the
BLI task but degrades when the language pair is distant [Vuli¢ et al., 2019]. Fur-
thermore, Glavas et al. [2019] show that the BLI is not necessarily correlated to
downstream performance.

Bilingual Embeddings. Bilingual Embeddings induce the cross-lingual space by
jointly learning representations from scratch. In general, the general joint objective
can be expressed as:

a(Monoi + Monoy) + BBi

where Mono; and Monos are monolingual models, aiming to capture the clus-
tering structure of each language, whereas the bilingual component, B4, encodes
the information that ties the two monolingual spaces together [Klementiev et al.,
2012, Luong et al., 2015]. The hyperparameters « and 3 weight the influence of
the monolingual components and the bilingual component.

One popular choice is the BiSkip-gram model which extends the Skip-gram
model (see Section 2.1.3) by predicting words crosslingually rather than just mono-
lingually, see Figure 2.7. However, the approach is expensive in terms of supervi-
sion as the BiSkip-gram approach is based on a parallel corpus. Furthermore, for
low-resource languages, this level of supervision is, in some cases, impossible to
acquire.

CHAPTER 2. PRELIMINARIES & RELATED WORK 20

2.1.5 Cross-Lingual Contextualized Word Representations

Transformers and RNNs produce contextualized word embeddings, i.e., they en-
code the same word differently depending on its context. We already discussed in
Section 2.1.3 why transformers improve upon RNNs from an architectural stand-
point and how it benefits the pre-training. This section will first dive into one of
the most popular transformer models and its pre-training tasks. We then explore
multilingual transformers and, more importantly, the XLLM-R model as it builds the
foundation of our thesis.

BERT. Before exploring multilingual transformer models, we introduce the per-
haps most popular transformer: BERT (Bidirectional Encoder Representations
from Transformers) [Devlin et al., 2019]. BERT is a sequence encoder-only model,
which slightly modifies the Transformer architecture [Vaswani et al., 2017] in the
following ways: As it only consists of an encoder, the model allows information to
flow bidirectionally, creating bidirectional representations.

Specifically, the BERT encoder is composed of L layers, each layer [with M
self-attention heads, where a self-attention head (m, [) has a key, query and value
encoders. Each one is calculated by a linear layer:

Q™! () = Wi (x) + by

K™ (@) = W () + by,

V@) = W () + b,
where the input x is the output representation embedding layer for the first encoder
layer, and for the rest of the layers, « is the output representation of the former
encoder layer. These are then fed into the scaled dot-product attention (2.4) (which
does not introduce any new parameters) and concatenated by the projection (2.5),

outputting hll. The output is then again fed into the MLP with the layer norm
component of the transformer block:

hb = Dropout(WTln1 -h! + blml)
h +x) — u

=g o TR

h!, = GELU(W/,_-h} +bl,)

hi = Dropout(an3 R+ bing)

(h +h%) —p
5 03 +blI,N2

out’ = gy, ©
The model parameters O are therefore constructed from the weight matrices W(lf

bias vectors bl(’.()‘) and vectors gé.).

)
) ’

CHAPTER 2. PRELIMINARIES & RELATED WORK 21

Softmax probabilities
the vocabula
maximised w.r.. the masked token t3

Output softmax

vector. vector vector vector
[} MAS} 1 15

Bidirectional Encoder Representation Transformers (BERT)

Contextualised
token vectors

Masked tokenized

t 2R [MAS} [t5
sentence L9 \

Random Masking

Original tokenized
sentence

Figure 2.8: Masked Language Modeling task in BERT. Masked tokens get replaced
with a special token [MASK]. Taken from Torregrossa et al. [2021].

Furthermore, the pre-training task is not the next word prediction anymore but
consists of two novel pre-training tasks: (1) The masked language modeling task
(MLM) and the (2) next-sentence prediction (NSP) task. MLM masks tokens of the
input sequence, and the task is to predict the original token based on the masked
sequence, see Figure 2.8. The masking happens by selecting 15% tokens, then
80% are masked, or 10% replaced by a random token or 10% left unchanged. On
the other hand, NSP asks the model to predict whether the input, which consists
of two concatenated sentences, if they are consecutive to one another. Specifically,
they construct sentence pairs by taking 50% actual sentence pairs that are consecu-
tive and 50% artificial sentence pairs that are not consecutive. Additionally, while
tokenizing the input sequence, BERT inserts special tokens, such as the [CLS]
token and [SEP], where the former is always inserted at the start of a sequence,
and the latter separates two sentences allowing to process sentence pairs. The pre-
trained BERT model can then be fine-tuned end-to-end by adding one additional
output layer, which either takes the token representations for token level tasks or
the [CLS] representation for classification tasks as an input. BERT achieves state-
of-the-art for a wide range of tasks, such as question answering and language in-
ference [Devlin et al., 2019] and marks the start of modern NLP with transformers.
A noteworthy modification of the BERT model is RoBERTa (Robustly Optimized
BERT Pretraining Approach) [Liu et al., 2019b]: First, they remove the NSP task,

CHAPTER 2. PRELIMINARIES & RELATED WORK 22

use bigger batch sizes & longer sequences, and use a dynamic masking strategy,
i.e., the masking pattern is generated every time a sequence is fed to the model.
RoBERTa outperforms BERT on GLUE, RACE, and SQuAD.

mBERT. The idea to extend BERT to multiple languages is to concatenate multiple
monolingual corpora to then jointly pre-train on it. As this massive multilingual
corpus from many languages has an enormous vocabulary size and a large number
of out-of-vocabulary tokens, BERT/mBERT uses a subword-based tokenizer. The
idea is to split rare words into smaller meaningful subwords, e.g., papers” is split
into ”paper” and ”’s”. The model then learns that the word “papers” is formed
using the word “paper” with a slightly different meaning but the same root word.
There are many different implementations of this idea, such as WordPiece [Wu
etal., 2016], BPE [Sennrich et al., 2015] and SentencePiece [Kudo and Richardson,
2018]. The original BERT/mBERT implementation uses WordPiece. To encode
text from multiple languages, the subword tokenizer creates its vocabulary on the
concatenated text. The multilingual version of BERT, dubbed mBERT, pre-trains
on 104 languages and surprisingly learns strong cross-lingual representations that
generalize well to other languages via zero-shot transfer [Pires et al., 2019, Wu
et al., 2019] without any explicit supervision.

This ability can be explained by three factors [Pires et al., 2019]: (1) The sub-
word tokenizer maps common subwords across languages which act as anchor
points for learning an alignment, e.g., "DNA” © has a similar meaning even in
distantly related languages. The anchor points are similar to the seed dictionary in
the projection-based approach (see Section 2.1.4). (2) This effect is then reinforced
and distributed to other non-overlapping tokens by jointly training across multiple
languages forcing co-occurring tokens also to be mapped to a shared space. (3)
mBERT learns cross-lingual representations deeper than simple vocabulary mem-
orization, generalizing across languages. However, recent works [Wu and Dredze,
2019, K et al., 2020] show that a shared vocabulary is not required to create a
strong cross-lingual representation. [K et al., 2020] additionally demonstrate that
word order plays an important role.

XLM. Lample and Conneau [2019] introduce a new unsupervised method for
learning cross-lingual representations, called XLLM (cross-lingual language mod-
els). XLM builds upon BERT and makes the following adjustment: First, they in-
clude the Translation Language Modeling (TLM) task into the pre-training. Each
training sample consisting of pairs of parallel sentences (source and target sen-
tence) is randomly masked. To predict a masked word, the model is then allowed
to either attend to the surrounding source words or the target translation, encourag-

%DNA” is indeed a subword in mBERT [Wu and Dredze, 2019].

CHAPTER 2. PRELIMINARIES & RELATED WORK 23

Modeing (k) | ke
A A A A
I m |
N S S S S S S S S S
emondcings [] [=] i
+ + + + + + + + + + + +
asaarge 0] [] =] [[=] Ce] 2] e [e] [[
+ + + + + + + + + + + +
o
Moceing (LM~
4 A A
| Transformer ‘
D S S S S S S S S S S
s
+ + + + + + + + + + + +
asaargs 0] [[=2] =] [=] [[=] e fe] [5]
+ + + + + + + + + +
s o
9

Figure 2.9: Cross-lingual language model pretraining. Image taken from Lample
and Conneau [2019].

ing the model to align the source and target representations, see Figure 2.9. They
then choose to drop the NSP task and only alternate training between MLM and
TLM. Furthermore, the model receives a language ID to its input (similar to posi-
tional encoding), helping the model learn the relationship between related tokens in
different languages. XLLM uses the subword tokenizer BPE [Sennrich et al., 2015]
which learns the splits on the concatenation of sentences sampled randomly from
the monolingual corpora. Furthermore, XLLM samples according to a multinomial
distribution with probabilities:

(67 .
= —2— with p= — (2.6)

N
ijl Py Dkt Tk

where ¢ denotes the index of the language and n; the the number of sentences in
the text corpora of the language with the index i. XLM uses o = 0.5.

XLM outperforms mBERT on XNLI [Conneau et al., 2018] in 15 languages.
However, XLM handles fewer languages than mBERT, is based on a larger model,
and uses a high amount of supervision as it needs parallel sentences during pre-
training. Therefore the difference may not be so significant in reality. Furthermore,
acquiring parallel sentences for low-resource languages is problematic, making the
model unsuitable for such scenarios.

XLM-R. Conneau et al. [2020] propose to take a step back and drop the TLM task
and only pre-train in RoBERTa fashion with the MLM task on a huge, multilin-

CHAPTER 2. PRELIMINARIES & RELATED WORK 24

gual dataset. They dub their multilingual model XLM-RoBERTa (XLM-R). They
crawled a massive amount of text, over 2.5TB of data in 100 languages. Addition-
ally, they changed the vocabulary size of RoOBERTa to 250000 tokens compared
to RoBERTa’s 50000 tokens. They employ the subword tokenizer SentencePiece
[Kudo and Richardson, 2018] with an unigram language model [Kudo, 2018].
They use the same sampling strategy (2.6) as XLM, but utilize o = 0.3. Fur-
thermore, XLM-R does not use language IDs, which will allow XLM-R to better
deal with code-switching. Conneau et al. [2020] provide two models: XLM-Rgyse
(L =12, H =768, A = 12,270M params) and XLM-R (L = 24, H = 1024, A =
16, 550M params).

Conneau et al. [2020] show that XLM-R sets a new State-of-the-Art on numer-
ous cross-lingual tasks. Compared to mBERT and XLM, XILLM-R provides sub-
stantial gains in classification, sequence labeling, and question answering without
any explicit cross-lingual supervision.

2.1.6 Challenges in Multilingual Transformers

As XLM-R and the concept of multilingual transformers build the basis of our
thesis, we will further analyze weaknesses and how our approach tries to alleviate
them.

Low-Resource Languages. Even though multilingual LMs do not use any explicit
cross-lingual signals, they still create multilingual representations [Pires et al.,
2019, Wu and Dredze, 2019], which can be used for cross-lingual downstream
tasks. By releasing a new multi-task benchmark for evaluating the cross-lingual
generalization, called XTREME’, which covers nine tasks and 40 languages, Hu
et al. [2020] showed that even though models achieve human performance on
many tasks in English, there is a sizable gap in the performance of cross-lingually
transferred models, especially in low-resource languages. Additionally, Wu and
Dredze [2019], Lauscher et al. [2020] showed that multilingual transformers pre-
trained via language modeling significantly underperform in resource-lean scenar-
ios and for distant languages. Furthermore, the literature [Pires et al., 2019, Wu
and Dredze, 2019, K et al., 2020] focused on evaluating languages that were from
the same language family or with large corpora in pre-training, languages such as
German, Spanish or French. For example, K et al. [2020] investigate Hindi, Span-
ish, and Russian, which are from the same language family, Indo-European, and
have a large corpus from Wikipedia. This concern is raised by multiple sources
[Lauscher et al., 2020, Wu and Dredze, 2019], which show that the performance
drops huge for distant target languages and target languages that have small pre-

"https://sites.research.google/xtreme

https://sites.research.google/xtreme

CHAPTER 2. PRELIMINARIES & RELATED WORK 25

Accuracy
D N xR
o o O
Accuracy
~J
(=}

w
=}

68

N
=)

7 15 30 60 100 7 30 100
Number of languages Number of languages
|I Low res. B High res. All | II Fixed capacity B Increased capaclryl

Figure 2.10: Trade-off between number of languages in pre-training vs. XNLI
performance. (Left) From 7-15 languages, the model benefits from positive cross-
lingual transfer, but degrades after the curse of multilingualty kicks in. (Right)
Adding more model capacity can alleviate some of the curse. Images taken from
Conneau et al. [2020].

training corpora. Furthermore, Lauscher et al. [2020] show empirically that for
massively multilingual transformers, pre-training corpora sizes affect the zero-shot
performance in higher-level tasks. In contrast, the results in lower-level tasks are
more impacted by typological language proximity.

As multilingual transformers struggle with low-resource languages, we inves-

tigate if our approach is capable of improving in these scenarios. To strengthen the
performance of low-resource languages, we try to avoid the curse of multilingual-
ity.
Curse of Multilinguality. Conneau et al. [2020] experiment with different settings
for the XLM-R model, showing that scaling the batch size, training data, training
time and shared vocabulary improve performance on downstream task. More im-
portantly, they show that for a fixed model capacity, adding more languages to the
pre-training lead to better cross-lingual performance on low-resource languages till
the per-language capacity is too low (capacity dilution), after which the overall per-
formance on monolingual and cross-lingual benchmarks degrades. They call this
the curse of multilinguality, see Figure 2.10. Adding more languages to the pre-
training ultimately has two important effects: (1) Positive cross-lingual transfer,
especially for low-resource languages, and (2) lower per-language capacity, which
then, in turn, can degrade the overall model performance. Multilingual transformer
models have to carefully balance these two effects of capacity dilution and positive
transfer. Adding more capacity to the model can alleviate some of the curse but is
not a solution for moderate-size models.

Furthermore, the allocation of the model capacity across languages is influ-
enced by the training set size, the size of the shared subword vocabulary, and the
rate at which the model samples training instances from each language during pre-

CHAPTER 2. PRELIMINARIES & RELATED WORK 26

training. Conneau et al. [2020] show that sampling batches of low-resource lan-
guages improve performance on low-resource languages and vice-versa. XLM-R
uses a rate of & = 0.3, which still leaves some room for improvement on low-
resource languages.

Our approach introduces language-specific students that allocate 100% of model
parameters to one language, avoiding the capacity dilution while still benefiting
from the acquired cross-lingual knowledge from XLM-R by distilling from the
XLM-R model.

2.2 Knowledge Distillation

Knowledge Distillation is a technique to transfer knowledge from a well-trained
teacher model to a student model, typically smaller than the teacher. During train-
ing, Knowledge Distillation allows the student model to access the learned knowl-
edge from the teacher model, providing more information to the student. Thus, the
student can achieve similar or even better performance than the teacher.

As our thesis is based on multilingual transformers, we restrict our review to
Knowledge Distillation for transformers.

2.2.1 Motivation & Preliminaries

Motivation. Bucila et al. [2006] first introduced the concept of Knowledge Dis-
tillation as a way to compress models by transferring the learned knowledge to a
smaller model. In their work, the primary goal was to compress a large complex
ensemble into smaller, faster models without significant performance loss. First,
they train the ensemble model (also called feacher) and then transfer the acquired
knowledge to a smaller model (also called student) by mimicking the teacher’s
behavior. Thus the idea of Knowledge Distillation® was born.

Knowledge Distillation is especially beneficial in the case of complex, over-
parameterized teachers. From an optimization perspective, Du and Lee [2018],
Soltanolkotabi et al. [2018] show that high capacity models (i.e., the teacher) can
find a good local minimum due to over-parameterization. Therefore, using these
over-parameterized models to guide a lower capacity model during training can
facilitate optimization. The state-of-the-art multilingual models are massive pre-
trained transformers consisting of millions of parameters which some argue are
over-parameterized but need the capacity during pre-training [Hao et al., 2019,
Conneau et al., 2020, Dufter and Schiitze, 2021]. Our approach uses Knowledge

$Knowledge Distillation can also be referred to as teacher-student Knowledge Distillation.

CHAPTER 2. PRELIMINARIES & RELATED WORK 27

Distillation to precisely distill these transformer models to induce cross-lingual
knowledge into students.

Vanilla Knowledge Distillation. The most straightforward approach to Knowl-
edge Distillation is to distill from the output layer by matching the output of the
teacher and student [Bucila et al., 2006, Ba and Caruana, 2013, Hinton et al., 2015].
Initially, Bucila et al. [2006] used the teacher to make predictions on an unlabeled
dataset producing labels for the student to mimic. The created labels are referred
to as hard labels, and the dataset used to train the student is called transfer dataset.
As hard labels only transfer information about the highest class probability, Ba and
Caruana [2013] propose to use the logits of the teacher, called soft labels. The
idea is that the soft labels of a well-trained teacher provide additional supervisory
signals of the inter-class similarities to the student. They directly used the logits z
by minimizing the squared difference between the logits produced by the teacher
and the logits produced by the student:

1
Liogis = 57 D 122 = 22" [, @.7)
TeEX

where N is the number of examples, 21 ¥ the logit output of the teacher and sz
of the logit output of the student.

One problem that may arise in well-trained teachers is that they are overcon-
fident and thus almost always predict classes (tokens) with very high confidence.
The learned similarities between similar classes (tokens) reside in the ratios of very
small probabilities in the soft targets - These, however, have very little influence on
the cost function (2.7) during distillation. To leverage the information residing in
these small probabilities Hinton et al. [2015] propose to soften the distribution by
modifying the predicted probability distribution of the teacher. Hinton et al. [2015]
introduce a variable called temperature into the final softmax:

exp (24,:/T)
>2jexp (22,5/T)’
where T' denotes the temperature, which is normally set to 1 for the softmax func-
tion. A higher temperature T' causes a softer probability distribution over tokens,
resulting in a higher entropy in the probability distribution. Hinton et al. [2015]
then use the same temperature 7' when training the student to match these soft
targets. Furthermore, Hinton et al. [2015] showed that matching logits is a spe-
cial case of the modified softmax in (2.8). Using the Kullback-Leibler divergence
between teacher and student, we get the (unscaled) Hinton loss function:

> Drr (o(z " T)llo (2275 T)) -
Tz€EX

oz T)i = pi =

(2.8)

CHAPTER 2. PRELIMINARIES & RELATED WORK 28

To compensate for the changed magnitude of the gradients caused by the soft tar-
gets scale, Hinton et al. [2015] multiply the loss function with T2 to get the Hinton
loss function:

Ly =T Dip(c(zl%T)|o(z":T)). (2.9)
reX

This allows us to change the temperature while experimenting without changing
the relative contributions of the soft targets. The Hinton loss (2.9) is the vanilla
setup that is mainly used and referred to as (vanilla) Knowledge Distillation.

The main difference between different Knowledge Distillation strategies is how
one mimics the teacher’s behavior. Formally, we can define a transformation f7%
and f°T of the teacher and student network inputs, respectively, to some infor-
mative representation for transfer. Jiao et al. [2020] calls these transformations
behavior functions. Knowledge Distillation can then be defined in general as min-
imizing the objective function

Lxp = Z L(fM (@), fST(x)))

reX

where £(-) is a loss function evaluating the difference between a teacher and stu-
dent networks, x the (text) input, and X denotes the training set. Behavior func-
tions can be defined for any type of representation of the input, e.g., the logits of the
final output or some intermediate representations in the network, which the student
then mimics.

2.2.2 Brief History: Knowledge Distillation for Transformers

Knowledge Distillation methods first found their use in the area of Computer Vi-
sion. As AlexNet [Krizhevsky et al., 2012], one of the largest neural networks
at that time, completely outperformed other methods on ImageNet [Deng et al.,
2009], the trend towards bigger models started in that area. To keep the mod-
els to a relatively acceptable size while still having the same performance as the
big models, a variety of model compression techniques were developed, such as
Knowledge Distillation, see the survey of Gou et al. [2021] for a more in-depth
look into Knowledge Distillation in Computer Vision.

Task-Specific Distillation. Sun et al. [2019] was one of the first known successes
at using Knowledge Distillation for BERT at the fine-tuning stage. They introduce
Patient Knowledge Distillation (PKD) which uses the intermediate representations
of BERT for a more effective distillation (additional to the Hinton Loss). This

CHAPTER 2. PRELIMINARIES & RELATED WORK 29

is motivated by previous findings of Romero et al. [2015] showing that distill-
ing intermediate representations can serve as hints for the student during training,
improving the final performance. Similar to PKD, XtremeDistil [Mukherjee and
Awadallah, 2020] also distills from intermediate representations but additionally
utilizes parameter projection that is agnostic of teacher architecture. Subsequently,
inspired by the findings that attention weights of BERT capture linguistic knowl-
edge and that BERT becomes more complex in higher layers [Clark et al., 2019a],
Stacked Internal Distillation (SID) [Aguilar et al., 2020] additionally distills the
attention probabilities of the teacher and from lower layers first. However, these
works used distillation for fine-tuned models on specific downstream tasks (task-
specific distillation). In our thesis, we want to produce a general-purpose student
that can be fine-tuned on any downstream task. While we are not focusing on
task-specific distillation [Liu et al., 2019a, Turc et al., 2019, Tang et al., 2019,
Kaliamoorthi et al., 2021] or multi-task distillation [Tan et al., 2019, Clark et al.,
2019b, Liu et al., 2020], we still want to mention important work in this field.

General-Purpose Students. To produce general-purpose students, distillation hap-
pens during the pre-training tasks, mainly the masked language modeling task. In
this task, the transformer model is trained to predict the original token for each
masked token by maximizing the estimated probability for this token. The standard
loss function is to minimize the cross-entropy between the transformer’s predicted
distribution and the one-hot distribution of all tokens. We denote the loss as the
masked language modeling loss Ly v [Devlin et al., 2019] as

Lviv=—) (Z lai 1og(px,i>) , (2.10)

reX i

where [, ; is the ground-truth and p, ; the predicted probability for i-th token in
the text input x. Typically a transformer applies a softmax function to obtain p; ;,
denoted by 0(2;) = pz = (Pa,1, .-, Pz,c), Where o is the softmax function and
2y = (22,1, -, Zz,c) the logit output of the text input x.

DistilBert [Sanh et al., 2020] extends the work of Sun et al. [2019] by distilling
during pre-training on a large-scale corpus with a soft-label distillation loss and a
cosine embedding loss to construct a general-purpose student. Furthermore, they
initialize the student from the teacher by taking one layer out of two. Similar to
SID [Aguilar et al., 2020], TinyBert [Jiao et al., 2020] introduce additional atten-
tion distillation to produce general-purpose students. Specifically, they distill self-
attention distributions Attention(Q, K, V') (2.4). TinyBert further uses task distilla-
tion with data augmentation to strengthen performance on downstream tasks. They
show that their 6 layer model performs on par with its teacher BERT on the GLUE
benchmark [Wang et al., 2019]. Instead of using shallower students, MobileBERT

CHAPTER 2. PRELIMINARIES & RELATED WORK 30

[Sun et al., 2020] uses thinner students by introducing bottleneck structures which
have been shown to be more effective [Turc et al., 2019]. Compared to Tiny-
Bert, they outperform it on GLUE and SQuAD with a similar-sized MobileBERT
while not utilizing any task-distillation or data augmentations during fine-tuning.
However, MobileBERT constructs another teacher network and many architectural
modifications to help facilitate training. MiniLM [Wang et al., 2020] only distills
the self-attention module with an added loss function: They align the relation be-
tween values in the self-attention module, which is calculated via the multi-head
scaled dot-product between values V. Furthermore, they only distill from the last
transformer layer of the teacher. Compared to TinyBert and MobileBert, MiniLM
alleviates the difficulties in layer mapping between the teacher and student models,
and the layer number of our student model can be more flexible. Khanuja et al.
[2021] introduce MergeDistil, which uses multiple mono- or multilingual teachers
to distill into one general-purpose student to leverage language-specific LM.

To further dive deeper into previous works and build a foundation for further
exploration for our thesis, we distinguish previous works into which parts of the
transformer they distill from.

2.2.3 Transformer Components Distillation

This section will explore different behavior functions and their corresponding loss
function to transfer knowledge from a transformer teacher into a transformer stu-
dent. We categorize the possible parts of the transformer that we can distill from
into: Final output layer, hidden layer representations, attention and embedding
distillation. We summarize our findings in Table 2.1.

Final Output Layer. One simple idea to induce knowledge from a teacher during
pre-training is to use the predicted distribution over all tokens of the teacher model
as soft targets for training the student. The hope is that soft targets are much more
informative than hard targets as they can reveal similarities between tokens, e.g.,
the masked token is “dog” and our well-trained teacher model would give a high
probability to ”dog”, but also to “’cat” as both could make sense in the masked sen-
tence. This information about similarities between tokens can then be transferred
to our students. One problem that may arise in well-trained teachers is that they
almost always predict the correct token with very high confidence.

Almost all works use the hard and soft targets to distill knowledge from the
teacher. PKD, SID, and DistilBERT use the cross-entropy loss to distill from the
soft and hard targets, while XtremeDistil uses the mean-squared error to align soft
targets. In some implementations, the Kullback Leibler loss is used to align soft
targets. During pre-training, TinyBert does not use any output layer distillation

CHAPTER 2. PRELIMINARIES & RELATED WORK 31

Distillation Name Embedding Hidden Layer Distill Final Output Layer
Attention Hidden Representation Soft Targets Hard Targets

Hinton Loss
[Hinton et al., 2015] - - CE CE
PKD .
[Sun et al., 2019] — — MSE (Uniform) CE CE
SID KL (Uniform) COS (Uniform) CE CE
[Aguilar et al., 2020]
DistilBert
[Sanh et al., 2020] cos - - CE CE
TinyBert . .
[iao et al., 2020] MSE MSE (Uniform) MSE (Uniform) — —
XtremeDistil
[Hu et al., 2020] SVD — KL (Uniform) MSE CE
MiniLM
[Hu et al., 2020] — KL (Last) — — —

Table 2.1: Categorizing of previous works into different transformer parts distilla-
tion during pre-training. Notice that TinyBert does not utilize soft or hard targets
during pre-training, only in their second distillation stage (task-distillation). Fur-
thermore, we specify the loss function (KL: Kullback Leibler Loss; MSE: Mean-
squared error; COS: Cosine Embedding Loss; CE: Cross-entropy loss; SVD: Sin-
gular Value Decomposition.

as Jiao et al. [2020] argue that their goal is to primarily learn the intermediate
structures of BERT. Furthermore, they conduct experiments showing that output
layer distillation does not bring additional improvements on downstream tasks.

Hidden Layer Representation Distillation. Using only logits to transfer cross-
lingual knowledge from the teacher can be problematic as they only serve as one
“task-specific” knowledge, in this case, masked language modeling. Romero et al.
[2015] show that additional hints from the intermediate layers can improve the
training process and the final performance of the student.

As one has to decide which layer of the teacher to distill from (typically, the
student is smaller than the teacher), we have to define a mapping function. For
this purpose, we assume that the teacher model has N Transformer layers and the
student M Transformer layers, where M < N. The index O corresponds to the
embedding layer, M + 1 the index of the student’s prediction layer, and NV + 1 the
index of the teacher’s prediction layer. The mapping function is then defined as

n = g(m), 0<m<MO0<g(m)<N (2.11)

between indices from student layers to teacher layers, where the teacher’s g(m)-th
layer is distilled into the m-th layer of the student model. Typically, there are four
different mapping strategies:

CHAPTER 2. PRELIMINARIES & RELATED WORK 32

Teacher (L=6) Student (L=3) Teacher (L=6) Student (L=3) Teacher (L=6) Student (L=3)

Figure 2.11: Given a teacher with 6 layers and a student with 3 layers, we visualize
different mapping functions: (Left) Uniform, (Middle) Top and (Right) bottom.

(1) Uniform: We distill uniformly over the teacher layers. E.g. assume 12 layer
teacher and 6 layer student, then the mapping function is g(m) = m * 2.

(2) Top: We distill from the top layers of the teacher: g(m) =m + N — M.
(3) Bottom: We distill from the bottom layers of the teacher: g(m) = m.

(4) Last: We distill only from the last layer of the teacher into the last layer of
the student: g(M) = N.

For a visualization of different mapping functions, see Figure 2.11. We discuss
which mapping functions in previous works were tested and which performed best.

PKD [Sun et al., 2019] focuses on extracting intermediate representations but
only for the [CLS] token, reasoning that BERT s original implementation [Devlin
et al., 2019] mostly uses the output from the last layer’s [CLS] token to perform
predictions for downstream tasks. The hope is that if the student can imitate the
representation of [CLS] in the teacher’s intermediate layers for any given input,
the generalization ability can be similar to the teacher. The additional loss is then
defined as the mean squared error between the normalized hidden states of the
[CLS] token in all layers:

M
2
Lysecs = Y 3 MSE (CLSST (2), CLSTE, (@)
zeX m=1

where CLS5T (2) € R? and CLSZ(%)(CC) € R? extracts the [CLS] token for the
input z in the layer m for student and g(m) teacher respectively. PKD was tested
with the mapping function top and uniform, where the strategy uniform showed
better performance. Similar to PKD, SID Aguilar et al. [2020] also uses hidden

CHAPTER 2. PRELIMINARIES & RELATED WORK 33

vector representations for the [CLS] token to additionally align internal represen-
tations, but opted to use cosine similarity

Leoscrs(x) =1 — cos (CLs;iT(x), cLs’E, (m))
with the uniform mapping strategy. The obvious problem with focusing on the
[CLS] is that it only works for tasks that use the [CLS] for prediction such as
tasks in the GLUE dataset [Wang et al., 2019].

Jiao et al. [2020] extended the idea of distilling hidden layer representations
to student representations with any arbitrary number of hidden dimensions with
their proposed model TinyBert. Let H3T ¢ REX4 and H;F(i) € REX4 refer to
the hidden states in layer m of student and teacher networks respectively, L the
sequence length and the scalars d’, d denote the hidden sizes of the student and
teacher models respectively. Instead of assuming that the hidden dimension is the
same for the teacher and student d’ = d, they allow for d # d’ in general. This
allows for creating thinner models by using a smaller hidden dimension d’ < d
than the teacher. They achieve this by introducing a learnable linear transformation
matrix W € R¥*? to transform the hidden states of the student network into
the same space as the teacher network’s states, i.e., > W € RE*4, TinyBert
transfers the knowledge which resides in the hidden layers output representation
from each token in the sequence by minimizing the MSE across all tokens:

Lhidygg (- 3m) = MSE(HSLTWm, Hg(ﬂ)% (2.12)

where the matrices H5! € RE*4 and Hg(f;) € RE*4 can have different hidden

sizes d # d'. Furthermore, they experimented with all three mapping functions
and concluded that uniform works best in their case. Notice that we can also align
hidden representations with the cosine loss

Lcoshidn = 1 — cos(Ha! Wi, H;;F(fl)), (2.13)

with the matrices H;! € RE*¢ and H] 2\ € REx4,
XtremeDistil also uses a projection to make all output spaces compatible. The

projection however is non-linear and they use the KL-divergence:
[’KLhidTL(. 7'rn) — -DKL (Gelu (HSLTWm + bm) |’H§§n)))

where W,,, is the learnable projection matrix, b, the learnable bias term and Gelu
(Gaussian Error Linear Unit) is the non-linear projection function.

As we have seen, different mapping functions were used across previous work.
It might not be useful to distill from intermediate representations as in Jiao et al.

CHAPTER 2. PRELIMINARIES & RELATED WORK 34

[2020], Mukherjee and Awadallah [2020], Aguilar et al. [2020], especially when
the student is a network of lower representational capacity. Yang et al. [2021]
showed that using only the last hidden layer (last strategy) for matching repre-
sentation results in the best performance, albeit experiments were conducted with
Convolutional Neural Networks. To further align the last hidden representation,
Yang et al. [2021] use the teacher’s pre-trained Softmax Regression (SR) classifier
to first pass the input x to the teacher network resulting in the output

U(ZJZ;FE) (WN+1 TE)a

where W££1 is the weight matrix of the softmax classifier head. Moreover, they
feed the same input to the student to get the last hidden representation H]%T and
input the representation to the teacher’s SR classifier to obtain

U(ST) (W ST)
They then optimize the loss

Lsgr = — (WN+1) log (o (Wi H ST)) ;

while keeping the classifier’s parameter W;{;E I frozen. This loss is aligning the last
hidden representations since if o(221F) = (257 (which the loss is optimizing to)
then this implies that H y; TE = Hy; N T.

Attention Distillation. Clark et al. [2019a] found that the attention weights of the
transformer model BERT can capture linguistic knowledge, which can be used to
transfer linguistic knowledge into our student. Motivated by this, Jiao et al. [2020]
additionally uses attention distillation for TinyBert, which uses the mean squared
error to align the teacher and students matrices of the multi-head attention. Let the
matrices @, K,V € REX% denote the queries, keys and values, where dj, is the
dimension of keys. As already discussed, the attention Attention(Q, K, V') (2.4) is
calculated with

Vi ’

where dj, acts as a scaling factor. We then calculate the attention loss with

Attention(Q, K, V) = o(A)V e RE*4% (2.14)

?*—‘

h
LMSEAw = Z E(A7T, ATE), (2.15)

where h is the number of attention heads, A; € RL*L refers to the attention matrix
before applying the softmax, the index ¢ corresponds to the i-th head of teacher or

CHAPTER 2. PRELIMINARIES & RELATED WORK 35

/ Attn, o6 N,
/ P \
l‘ \‘

! Attention Matrices Attention Matrices
1 (IRheadL:1y (Rheadl:1y \
1 s
|

—)
—]
(—
—

HE

5
[—]
[
[—
l;]

1

1

1

L

v HiddenlSdtates Hidden States ! !
* / 1

1

1

(R (]Rl-d’)

\ A ke i
v ADD & Norm ADD & Norm !
. !
\ FFN FEN !
\ .I
\ ADD & Norm ADD&Norm]

\
" ,;
MHA MHA)
S — S S—
I 1
Teacher Layer Student Layer

Figure 2.12: Visualization of a attention and intermediate hidden representation
distillation. Taken from [Jiao et al., 2020].

student, L is the input text length, and MSE(-) means the mean squared error loss
function. They argue that using A instead of Attention(Q, K, V') (2.4) show faster
convergence rate and better performances. We visualize the TinyBert attention and
intermediate hidden representation distillation in Figure 2.12.

Nonetheless Aguilar et al. [2020] make use of the attention matrix Attention(Q, K, V)
(2.4) and chose the KL-divergence loss. For a given head in a transformer, the loss
can be formulated as

L
! A — Att(QTE, KTE yTEY,
LKAt = I ; Att(Q° 7, K7, V7)) log Att(Q5T, KST V5T,)

where Att(Q, K,V); = Attention(Q, K,V); € R% describe the i-th row of the
attention probability matrix.

MiniLM [Wang et al., 2020] additionally aligns the relation between values in
the self-attention module, which is calculated via the multi-head scaled dot-product
between values V57 and VT,

Embedding Distillation. Multiple lines of work indicate that the embedding layer
is important for a successful cross-lingual representation [Pires et al., 2019, Wu
and Dredze, 2019, Dufter and Schiitze, 2021]. Therefore, it is also important to
distill from our multilingual teacher’s embedding layer to our students.

CHAPTER 2. PRELIMINARIES & RELATED WORK 36

DistilBert uses the cosine embedding loss to align the embeddings of teacher
and student:

Lcosembed = 1 — cos(EST, ETF).

where the matrices £°7 and ETF refer to the embeddings of student and teacher
networks, respectively. Instead of using the cosine loss, TinyBert uses the MSE:

Lembyggped = MSE(ESTW,, ET). (2.16)

Again, TinyBert allows for a mismatch between dimensions of ES” and ET¥ by
using a learnable linear transformation W.

XtremeDistil [Mukherjee and Awadallah, 2020] uses Singular Value Decompo-
sition (SVD) to project the word embeddings of the teacher to a lower-dimensional
space for the student since they use the same WordPiece vocabulary.

2.2.4 Distillation Setup Strategies

This thesis introduces a novel distillation setup to induce aligned monolingual stu-
dents, which is why we review different distillation setup strategies for transform-
ers in this section. We restrict our literature review to a “fixed” teacher at the
distillation time and not an, e.g., jointly trained teacher-student setup, such as in
Jin et al. [2019]. Furthermore, we focus on the general distillation stage, where
we only perform distillation on the Masked Language Modeling objective. Finally,
the task is to distill knowledge from the multilingual teacher(s) to our student while
MLM pre-training on multiple monolingual text corpora, i.e., multilingual corpus,
obtaining a general-purpose student.

One Teacher, One student. In this setup, only one teacher exists and is distilled
into one student. Reimers and Gurevych [2020] use parallel data to facilitate strong
cross-lingual sentence representations by training the student model such that (1)
identical sentences in different languages are close and (2) the original source lan-
guage from the teacher model SBERT [Reimers and Gurevych, 2019] are adopted
and transferred to other languages. They do so by minimizing the mean squared
error of (1) the source sentence embedding of the teacher with the target sentence
embedding using parallel data and (2) the source sentence embedding of the teacher
and the student, see Figure 2.13 for a visualization.

Furthermore, all discussed monolingual distillation approaches can be extended
to create a multilingual student straightforwardly: Distill a multilingual teacher
into a student during the MLLM task on a multilingual corpus. Since the teacher
is already multilingual and the representations aligned [Pires et al., 2019, Wu and
Dredze, 2019], the cross-lingual knowledge can then be distilled into one student.

CHAPTER 2. PRELIMINARIES & RELATED WORK 37

Teacher EN sentence vector

Teacher
— 0.8-0.20.3
Hello World Model
Parallel Data (EN-DE) ' ' MSE-Loss
Student EN sentence vector
Hallo Welt
oo 0.7-0.10.3 MSE-Loss
Student
Model | 090204 —

Student DE sentence vector

Figure 2.13: Visualization of the distillation strategy of Reimers and Gurevych
[2020]. Given parallel data (here: English and German), the student model is
trained such that the sentence embeddings for the English and German sentences
are close to the teacher English sentence vector. Adopted from Reimers and
Gurevych [2020].

Consequently, every monolingual distillation approach can be directly applied, e.g.
PKD [Sun et al., 2019], DistilBert [Sanh et al., 2020] or TinyBert [Jiao et al., 2020].
We can generalize the distillation loss as a convex combination or a linear combi-
nation of all chosen loss functions. E.g. DistilBert uses a convex combination of
the masked language modeling loss Lypm (2.10), the Hinton Loss L (2.9) and
the cosine embedding loss Lcosemped (2.13):

LpB :Oé'ﬁH—i‘,B‘EMLM‘i"Y"CCOSembed(' ;M)v

where M is the index of the last hidden layer, a, 8,7 € [0, 1] witha + 4+~ = 1.
In this work, we will briefly discuss and conduct experiments with bilingual
students (see Section 4.4.4 and Section 4.5.3)

Multiple Teacher, One Student. Language-specific language models may per-
form better given a sizable pre-training data volume than multilingual teachers in
their respective language but are, in turn, monolingual and do not use any posi-
tive language transfer. Distilling multiple task-agnostic language-specific teachers
into one task-agnostic student can help the student be competitive or outperform
the individual language-specific LMs while still being multilingual. Khanuja et al.
[2021] merges multiple monolingual or multilingual pre-trained LMs into a sin-
gle task-agnostic multilingual student using task-agnostic Knowledge Distillation,
which they call MergeDistill. The difficulty is that each LM can have its own vo-
cabulary. Khanuja et al. [2021] use the union of all teacher LM vocabularies for the

CHAPTER 2. PRELIMINARIES & RELATED WORK 38

student vocabulary. They use a vocab mapping step teacher — student, converting
each teacher token index to its corresponding student token index. They first tok-
enize and predict for each language using their respective teacher LM and get the
top-k logits for each masked word. For distillation, they then use the Hinton Loss
L (2.9) and MLM loss Lym (2.10). Interestingly, their experiments show that
due to the shared multilingual representations, the student is able to perform in a
zero-shot manner on related languages that the teacher does not cover.

One Teacher, Multiple Students. In this setup, we have one multilingual teacher
and want to distill into multiple mono-, bi- or multilingual students, for which
the representations for each language are aligned across students. In this work,
we will focus on distilling into multiple monolingual students. To the best of our
knowledge, this is the first work that investigates distilling from a multilingual
teacher into monolingual students sharing a representation space.

2.2.5 Challenges

The trend towards bigger and bigger models in NLP is fueled by the high gener-
alization power of the learned representations. Smaller models lack the inductive
biases to learn these representations from the training data alone but may have the
capacity to represent these solutions [Ba and Caruana, 2013, Stanton et al., 2021].
We discussed several methods such as DistilBert [Sanh et al., 2020] and TinyBert
[Jiao et al., 2020] that achieve similar performances on some downstream tasks
as the teacher with just a fraction of the total parameter number. In the previous
sections, we discussed different Knowledge Distillation strategies to induce knowl-
edge into the student, e.g., the effects of distilling different transformer components
into the student. However, we highlight two open challenges in regards to Knowl-
edge Distillation in general (Fidelity vs. Generalization) and our thesis (KD for
Monolingual Students).

Fidelity vs. Generalization. Recently, Stanton et al. [2021] show that while
Knowledge Distillation can improve the generalization abilities of students, there
often remains a low fidelity, i.e., the ability of a student to match a teacher’s pre-
dictions. Previous works [Furlanello et al., 2018, Mobahi et al., 2020] already
show that in self-distillation, the student can improve generalization. This can
only happen by virtue of failing at the distillation procedure: The student fails to
match the teacher, see Figure 2.14 (a). These experiments, however, hold true for
students that have the same model capacity as the teacher. Often there is a signifi-
cant disparity in generalization between large teacher models and smaller students.
Importantly, Stanton et al. [2021] then show that for these larger teacher models,
improvements in fidelity translate into improvements in generalization, see Figure

CHAPTER 2. PRELIMINARIES & RELATED WORK 39

~

o
@
S

20 -
[T S z
5, e 5 ./._——.".——‘ 13
5 5 g 5
g5 739 ;ED 76 1 76 5
& 1 £

< 722 T 74‘;
7 L ———— 0 ——0—-0
! n" 72 O== = Pl

70 70 70 70
CIFAR-100 +12.5k GAN 425k GAN +37.5k GAN +50k GAN CIFAR-100 +125k GAN +25k GAN +37.5k GAN +50k GAN
=@-=Teacher-Student Agreement O~ Student Accuracy Teacher Accuracy
(a) Self-distillation (b) Ensemble distillation

Figure 2.14: The effect of enlarging the CIFAR-100 distillation dataset with GAN-
generated samples. The shaded region corresponds to i + o, estimated over three
trials. (a) The teacher and student have the same model capacity. Student fidelity
increases as the dataset grows, but the test accuracy decreases. (b) The teacher has
a larger model capacity than the student. Student fidelity again increases when the
dataset grows, but the test accuracy now also slightly increases. Figure taken from
Stanton et al. [2021].

2.14 (b).

KD for Monolingual Students. As this is the first work that explores distilling
multilingual encoders into monolingual components (to the best of our knowledge),
the question remains which parts of the teacher are important to distill from to im-
prove (1) alignment and (2) cross-lingual downstream task performance. Another
open question is whether sharing between students and weight initialization from
the teacher improves (1) and (2). Finally, as we have multiple students, we can not
utilize the default approach to solve cross-lingual downstream tasks: Fine-tuning
one multilingual model in the source language and evaluating/train with the same
model in the target language. We must explore fine-tuning strategies for multi-
ple (monolingual) students for cross-lingual downstream tasks. In the following
subsection 2.3 we review methods that can potentially be used.

2.3 Parameter-Efficient Fine-Tuning

In this section, we will briefly cover Adapters (Section 2.3.1) and Sparse-Fine-
Tuning (Section 2.3.2), specifically Diff-Pruning and BitFit. These techniques will
help us fine-tune our monolingual students on cross-lingual downstream tasks in a
zero- and few-shot manner (Section 3.3).

Motivation. The standard approach to solving a new task with a pre-trained trans-
former is by adding a task-head (e.g., a linear classification layer) on top of the pre-
trained transformer (encoder) and minimizing the task loss end-to-end. However,

CHAPTER 2. PRELIMINARIES & RELATED WORK 40

this approach results in a completely new unique, large model making it harder to
track what significantly changed during fine-tuning and therefore making it also
hard to transfer acquired task-specific knowledge (modularity). The latter is im-
portant in our monolingual setup as we want to transfer the acquired task-specific
knowledge by our source student into our target student, see Section 3.3 for more
details. Ideally, transferring the acquired task-specific knowledge still matches the
results of fully fine-tuning one model.

The first work that we explore is Adapters [Rebuffi et al., 2017, Houlsby et al.,
2019] which inserts a small subset of trainable task-specific parameters between
layers of a model and only changes these during fine-tuning, keeping the original
parameters frozen. We then discuss sparse fine-tuning, which only changes a subset
of the pre-trained model parameters. Specifically, we consider Diff-Pruning [Guo
et al., 2020], which adds a sparse, task-specific difference-vector to the original
parameters, and BitFit [Zaken et al., 2021], which enforces sparseness by only
fine-tuning the bias terms and the classification layer.

2.3.1 Adapters

Adapters were initially proposed for computer vision to adapt to multiple domains
[Rebuffi et al., 2017] but were then used as an alternative lightweight training strat-
egy for pre-trained transformers in NLP [Houlsby et al., 2019]. Adapters introduce
additional parameters to a pre-trained transformer, usually small, bottleneck feed-
forward networks inserted at each transformer layer. Adapters enable us to keep
the pre-trained parameters of the model fixed and only fine-tune the newly intro-
duced parameters on either a new task [Houlsby et al., 2019, Stickland and Murray,
2019, Pfeiffer et al., 2021] or new domains [Bapna et al., 2019]. Adapters perform
either on par or slightly below full fine-tuning [Houlsby et al., 2019, Stickland and
Murray, 2019, Pfeiffer et al., 2021]. Importantly, adapters learn task-specific repre-
sentations which are compatible with subsequent transformer layers [Pfeiffer et al.,
2020a].

Placement & Architecture. Most work insert adapters at each layer of the trans-
former model, the architecture and placement of adapters are, however, non-trivial:
Houlsby et al. [2019] experiment with different adapter architectures and empiri-
cally validated that using a two-layer feed-forward neural network with a bottle-
neck worked well, see Figure 2.15 (Right). This simple down- and up-projection
with a non-linearity has become the common adapter architecture. The placement
and number of adapters within each transformer block are still debated. Houlsby
et al. [2019] place the adapter at two positions: One after the multi-head atten-
tion and one after the feed-forward layers. Stickland and Murray [2019] just use
one adapter after the feed-forward layers, which Bapna et al. [2019] adopted and

CHAPTER 2. PRELIMINARIES & RELATED WORK 41

,4’ Adapter
1 Layer

Q00000
Feedforward
up-project

Feedforward
down-project

000000

Figure 2.15: (Left) Proposed placement of the adapter within transformer block:
After feed-forward neural network Pfeiffer et al. [2021]. (Right) Proposed adapter
architecture [Houlsby et al., 2019, Pfeiffer et al., 2021]. Images are taken from
Pfeiffer et al. [2021] and Houlsby et al. [2019].

extends by including a layer norm [Ba et al., 2016] after the adapter. Pfeiffer
et al. [2021] test out different adapter positions and adapter architectures jointly
and came to the conclusion to use the same adapter architecture as Houlsby et al.
[2019] but only places the adapter after the feed-forward neural network, see Fig-
ure 2.15 (Left).

Modularity of Representations. One important property of Adapters is that they
learn task-specific knowledge within each adapter component. The reason is that
they are placed within a frozen transformer block layer, forcing the adapters to
learn an output representation compatible with the subsequent layer of the trans-
former model. This results in modular adapters, meaning that they can be either
stacked on top of each other or replaced dynamically [Pfeiffer et al., 2020b]. This
modularity of adapters can be used to fine-tune multiple monolingual aligned stu-
dents on cross-lingual downstream tasks: Instead of fine-tuning the whole student
model on the source language, we insert and fine-tune the adapters, which then can
be inserted into the monolingual student corresponding to the target language (see
Section 3.3.3).

CHAPTER 2. PRELIMINARIES & RELATED WORK 42

2.3.2 Sparse Fine-Tuning

Sparse fine-tuning (SFT) only fine-tunes a small subset of the original pre-trained
model parameters at each step, effectively fine-tuning in a parameter efficient way.
The fine-tuning procedure can be describes as

@task = @pretrained + 5task

where O, is the task-specific parameterization of the model after fine-tuning,
Opretrained 18 the set of pretrained parameters which is fixed and g, is called the
task-specific diff vector. We call the procedure sparse if Jy iS sparse. As we
only have to store the nonzero positions and weights of the diff vector, the method
is parameter efficient. Method generally differ in the calculation of dsx and its
induced sparseness.

Methods. Guo et al. [2020] introduce Diff Pruning, which determines dy,sx by
adaptively pruning the diff vector during training. To induce this sparseness, they
utilize a differentiable approximation of the Ly-norm penalty [Louizos et al., 2017].
Zaken et al. [2021] induce sparseness by only allowing non-zero differences in
the bias parameters (and the classification layer) of the transformer model. The
method, called BitFit, and Diff-Pruning, both can match the performance of fine-
tuned baselines on the GLUE benchmark [Guo et al., 2020, Zaken et al., 2021].
Ansell et al. [2021] learn sparse, real-valued masks based on a simple variant of the
Lottery Ticket Hypothesis [Frankle and Carbin, 2018]: First, they fine-tune a pre-
trained model for a specific task or language, then select the subset of parameters
that change the most which correspond to the non-zero values of the diff vector
dwask- Then, the authors set the model to its original pre-trained initialization and
re-tune the model again by only fine-tuning the selected subset of parameters. The
diff vector i, is therefore sparse.

Comparison to Adapters. In contrast to Adapters, Sparse fine-tuning (SFT) does
not modify the architecture of the model but restricts its fine-tuning to a subset of
model parameters [Guo et al., 2020, Zaken et al., 2021]. As a result, SFT is much
more expressive, as they are not constricted to just modifying the output of Trans-
former layers with shallow MLP but can directly modify the pre-trained model’s
embedding and attention layers [Ansell et al., 2021]. Similar to Adapters, Ansell
et al. [2021] show that their sparse fine-tuning technique has the same concept of
modality found in Adapters [Pfeiffer et al., 2020b]. Again this modularity can be
used in our monolingual setup to fine-tune on cross-lingual downstream tasks.

Chapter 3

Monolingual Setup & Students

In this main chapter, we present our two approaches: MonoAlignment and
MonoShot. The former is a method to improve the cross-lingual alignment, while
the latter tries to improve cross-lingual representations. During the masked lan-
guage modeling task (monolingual setup), both methods distill multilingual en-
coders into language-specific components.

Specifically, in Section 3.1 we first motivate why our monolingual setup is ad-
vantageous (Section 3.1.2) and specify what obstacles one has to overcome (Sec-
tion 3.1.3). In Section 3.2 we then go into detail how the training procedure of the
monolingual setup is constructed (Section 3.2.1), which Knowledge Distillation
losses we test out (Section 3.2.2), what to share across students (Section 3.2.3) and
how to initialize the students (Section 3.2.4). In Section 3.3, we then investigate
how to effectively leverage cross-lingual knowledge in the monolingual setup dur-
ing zero-shot fine-tuning. Finally, in Section 3.4, we explain our proposed methods
MonoAlignment and MonoShot.

3.1 Motivation & Problem Formulation

As already in Section 2.1.4 described, the current state of the art to induce cross-
lingual representations is by using multilingual pre-trained encoders [Pires et al.,
2019, Wu and Dredze, 2019, Conneau et al., 2020]. This thesis aims to improve
these general-purpose cross-lingual representations by distilling cross-lingual knowl-
edge into monolingual components. However, we first must understand how the
strength of general-purpose cross-lingual representations can be evaluated (Section
3.1.1). We then discuss current problems in state-of-the-art cross-lingual represen-
tations and how we try to solve these issues with our approach (Section 3.1.2).

43

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 44

3.1.1 Measuring Cross-Lingual Representations

To capture the model’s cross-lingual generalization ability, we distinguish between
two cross-lingual abilities: The cross-lingual alignment of our students and the

cross-lingual downstream task performance’.

Cross-Lingual Alignment. One important way to probe a cross-lingual represen-
tation is by finding translations, either on the word-level [Conneau et al., 2017,
Glavas et al., 2019, Vuli¢ et al., 2019, Guzman et al., 2019] or sentence level
[Artetxe and Schwenk, 2019]. The idea is that translations are close to each other
in the cross-lingual space, which can be evaluated by finding the nearest neighbor
using cosine similarity and calculating the error rate. We use the the Tatoeba
dataset (Retrieval task) [Artetxe and Schwenk, 2019] to evaluate the cross-lingual
alignment of our students.

Cross-Lingual Downstream Tasks. Previous works show that only evaluating
translations has a weak correlation with other downstream tasks such as language
understanding tasks [Glavas et al., 2019]. For instance, Mohammad et al. [2016],
Smith et al. [2016] show that translations can alter the sentiment of a text, effec-
tively showing that translations can not capture cultural differences resulting in a
degradation of classification performances. Furthermore, later in our thesis, we
find the same poor correlation between cross-lingual alignment and cross-lingual
downstream task performance (see Section 4.5.1). Therefore we need more than
translations to evaluate the model’s cross-lingual generalization ability. One stan-
dard benchmark that has been established recently is the XTREME dataset that
covers classification, structured prediction (Struct. Pred.), Question & Answering
(QA), and retrieval tasks, each requiring a different level of reasoning [Hu et al.,
2020]. As not all tasks have validation and test sets for our target languages Turk-
ish and Swabhili, we choose XNLT (classification) [Conneau et al., 2018], Wikiann
dataset as a NER task (Struct. Pred.) [Pan et al., 2017] and XCOPA dataset (QA)
[Ponti et al., 2020], see Section 4.1 for more details on each task.

3.1.2 Motivation

Multilingual LM. As we already discussed the challenges of multilingual trans-
formers in Section 2.1.6, we shortly mention them here again: Hu et al. [2020]
show that the multilingual LMs have a significant cross-lingual transfer gap?, es-
pecially in low-resource and distant languages [Wu and Dredze, 2019, Lauscher

'In our thesis, we do not categorize a retrieval task as a downstream task as there is no further
fine-tuning process.

*Measured in the difference between performance on the English test set and the average perfor-
mance on the other languages.

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 45

et al., 2020]. Because of the curse of multilinguality, positive cross-lingual transfer
and capacity dilution has to be carefully traded off against each other. Increasing
model capacity can help alleviate the curse of multilinguality. However, it is not
practical as the memory and computational power are already at a high level.

Language-Specific LM. To avoid the issues caused by the capacity dilution and the
curse of multilinguality, practitioners often prefer to have a language-specific LM
that works well on a subset of languages that they are interested in, e.g., AraBERT
[Antoun et al., 2020], CamemBERT [Martin et al., 2020] and Finnish Bert [Virta-
nen et al., 2019]. However, these language-specific models are only monolingual,
not aligned with other languages, and in particular, do not use any positive cross-
lingual transfer. Therefore creating these language-specific LM for low-resource
languages without any positive cross-lingual transfer is problematic as we do not
have enough monolingual text. Furthermore, they are not suitable for cross-lingual
downstream tasks. We have abundant labeled data in a high-resource language but
none in the target language (zero-shot scenario).

Our Approach. To obtain the gained positive cross-lingual transfer of the multi-
lingual LM and to alleviate the issue of capacity dilution, we propose to distill the
multilingual LM into language-specific students (see Section 3.2 for more details).
We hope to reduce the capacity dilution by allocating language-specific parameters
(students), but still gaining from positive cross-lingual transfer of the multilingual
LM by distillation.

3.1.3 Problem Formulation

We only focus on the state-of-the-art transformer architecture, so we design distil-
lation methods specifically for transformer models. To benefit from cross-lingual
Knowledge Distillation and to assign language-specific students, there are four pri-
mary considerations: (1) The distillation loss Lyegel, (2) what is shared across
students, (3) the initialization of the students embedding and layers and (4) the
zero-shot fine-tuning strategies.

Distillation Loss. How can we construct the distillation loss Lode; Such that we
benefit from the cross-lingual knowledge of the teacher the most? The question is
which teacher components to distill from and what kind of loss functions we have
to use. We define the general distillation loss Lyode as follows: Given a teacher
model with N transformer layers and a student with M transformer layers. We
assume that student transformers are either smaller or equal in size of the teacher
M < N. The index 0 corresponds to the embedding layer, M + 1 the index of the
student’s prediction layer and N + 1 the index of the teacher’s prediction layer. If
we distill from the teacher’s layers, we have to choose which layers of the teacher

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 46

we distill to which layer of the student. For this purpose, we already defined the
mapping function n = g(m) (2.11) in Section 2.2.3. As we will introduce two
more mapping functions, we redefine this mapping function as g(m) = giess(m)
for clarification. Formally, we then define the general distillation loss as

M+1

Limodel = Z Z)\mﬁm—layer (f?i(':r)7 gj;,ss(m) (x)))

zeX m=0

where L, _jayer corresponds to the loss function of the mth layer (including em-
bedding and prediction layer), f,,(x) the behavior function induced from the m-
th layers and A, is the importance scalar (hyperparameter) of the m-th layer’s
distillation. In Section 2.2.3, we already gave an extensive overview of different
component distillation loss functions. In Section 3.2.2, we give an overview of all
constructed distillation losses.

Sharing across Students. Another aspect of our setup is if there is a need to share
components across students. Given our student models with M number of layers,
we define a subset of student layer indices gspare C {0,1,..., M} that indicates
which layers are shared across students. E.g. gspare = {0} corresponds to shar-
ing the embedding layer across all students. Sharing components across students
can be an important factor in having a stronger alignment between representation
spaces of student models or stronger cross-lingual downstream task performance.
We give an overview of sharing strategies in Section 3.2.3. Finally, we analyze
their impact on the cross-lingual downstream task performance in Section 4.4.3
and on the cross-lingual alignment in Section 4.5.2.

Initialization of Students. Another option is the initialization of our students. We
either randomly initialize our students or initialize the weights from the teacher (as-
suming that the student has the same architecture). Typically, our student is smaller
than the teacher, and therefore, we need another mapping function n = ginit(m)
between indices from student layers to teacher layers, where the ginii(m)-th layer
of the teacher is initialized for the m-th layer of the student model. As initialization
can give us a good starting point to find a strong cross-lingual representation, we
discuss two initialization strategies in Section 3.2.4. Subsequently, we study their
effect on the cross-lingual downstream task performance in Section 4.4.3 and on
the cross-lingual alignment in Section 4.5.2. .

Zero-Shot Fine-Tuning Strategies. In cross-lingual downstream tasks, the default
setting to evaluate multilingual models is by fine-tuning the model on the source
language and evaluating the same fine-tuned model on the target language. As we
have multiple monolingual students, we can not utilize the same setting. In Section
3.3, we discuss various fine-tuning strategies.

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 47

3.2 General-Purpose KD into Monolingual Components

This section will explore how our approach uses different Knowledge Distillation
methods to distill from a multilingual teacher into multiple monolingual (language-
specific) students. The goal is to distill the cross-lingual knowledge from the
teacher such that the cross-lingual representation space across students is either
more aligned or lends itself for cross-lingual downstream tasks (or both).

3.2.1 Monolingual Setup

This section discusses the distillation setup for our monolingual student distillation.
Our approach aims to distill a strong cross-lingual representation from a multilin-
gual encoder into monolingual students. Additionally, we want our students to be
general-purpose, which is why we distill the knowledge during the pre-training
task: Masked Language Modeling.

Teacher & Student Models. As we focus on multilingual transformers, we choose
the state-of-the-art model XLM-R [Conneau et al., 2020] as our teacher. XLM-R
has proven to have a very strong cross-lingual representation across many lan-
guages but still struggles in low-resource languages (see Section 2.1.6). Our stu-
dent has the same architecture and vocabulary size as the teacher. We only vary the
number of transformer layers of the student.

Training Procedure. We use Knowledge Distillation during the masked language
modeling task and utilize the same masking dynamic as XLM-R (see Section
2.1.5). As we want to create language-specific students, we only distill instances
into a student from the desired language(s). E.g., if we want to create a Turkish
student, we only distill Turkish instances into the Turkish student. Specifically, at
each distillation step, given students with a total of K languages, we optimize our
students as follows:

1 We create batches that only contain samples from one language for each
language. Each of the K batches are equal in size.

2. All created batches are then fed into the teacher, and the teacher’s output is
saved for later use in the distillation process.

3. We then loop through all batches and only feed each batch to the respective
language-specific student. Finally, we optimize the chosen distillation loss
Lmodel for each student-batch pair sequentially.

Algorithm 1 shows the pseudocode of one distillation step in the training proce-
dure.

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 48

Algorithm 1 Distillation Step: Training Procedure for CLKD
Require: Teacher Model T'. 51,52, ..., Sp Student Models, each Student has set
of target languages L; = {...},...,Lp = {...}.

L=LU..ULp > Set of Total Languages
N « |L| > Number Languages
By, ..., By < SampleBatchForEachLanguage(L) © Batch for each Language
for lang in L do > Loop through all Target Languages

Beurrent < GetBatch(By, ..., By, lang) > Batch for current Language

Outy < GetOutput(T', Beyrrent)
for S..rrent in StudentsForLanguage(lang) do > Loop through Students
> Corresponding to Language

Outs + GetOUtput(Scurrenta Bcurrent)
Loss + CalculateLoss(Outp, Outs, Beyrrent)
Scurrent — OptimiZe(LOSS, Scurrent)

end for

end for

3.2.2 Distillation Loss

In this section, we study various versions of the general distillation 10ss Lodel
(3.1.3) to distill multilingual encoders into monolingual components. The align-
ment across students only stems from the cross-lingual ability of the teacher that
we are distilling from. We hope to distill the shared and aligned representation
space from the multilingual teacher to our students without any explicit alignment.
Furthermore, we then hope to achieve the same or even better cross-lingual down-
stream performance than the teacher. We already discussed and organized previous
distillation losses in Section 2.2.3. We summarize all tested distillation losses in
Table 3.1.

Hinton. We first test out distilling from only the last output layer of the teacher.

We therefore use the same loss as in Hinton et al. [2015], a weighted average of

the (scaled) Hinton loss (2.9) and the MLLM loss (2.10) with the correct token:
Lol = a- Lyim + B Lu,

Hinton
where o, § € [0,1] and o + 5 = 1.

Hinton+Hidyssg. To incorporate intermediate layer representations, we match the
intermediate representations of the teacher and student. To match these representa-
tions, use the mean squared error EHidMSE' The final loss function is a linear com-
bination of the masked language modeling loss Lyrm (2.10), the Hinton Loss L

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 49

Distillation Name Emb Hidden Layer Distill Output Layer
Attention Hidden Repr. Soft Hard
Hinton — — — KL CE
Hinton+Hidysg (Uniform) — — MSE (Uniform) KL CE
Hinton+Hidysg+ATTysg (Uniform) — MSE (Uniform) MSE (Uniform) KL CE
Hinton+Hidysg+ATTysg+Embysg (Uniform)=MonoShot MSE MSE (Uniform) MSE (Uniform) KL CE
Hidysg+ATTyvsg+Embysg (Uniform) MSE MSE (Uniform) MSE (Uniform) — —
Hinton+Hidcos+ATTyvsg+Embysg (Uniform) MSE MSE (Uniform) COS (Uniform) KL CE
Hinton+Hidcos+AT Tysg+Embysg (Bottom) MSE MSE (Bottom) COS: Bottom KL CE
Hinton+Hidysg+ATTyisg+Embysg (Top) MSE MSE (Uniform) MSE (Uniform) KL CE
Hinton+Hidysg+ATTysg+Embysg (Bottom) MSE MSE (Top) MSE (Top) KL CE
Hinton+Hidysg+AT Tyvisg+Embygg (Last)=MonoAlignment MSE MSE (Bottom) MSE (Bottom) KL CE

Table 3.1: Loss Functions: We categorize the possible distillations of different
parts of the transformer into: Embedding (Emb), Hidden Layer, and Output Layer,
see Section 2.2.3 for more details. The distillation name is constructed from two
parts: The first part is the distillation loss name (see Section 3.2.2), and the second
part, which is denoted in brackets, is the mapping strategy (see Section 2.2.3). The
top part of the table denotes the different distillation losses that we study based
on the uniform mapping strategy. Additionally, we study the cosine loss function
to align hidden representations. The bottom part denotes the study of different
mapping strategies based on the Hint on+Hidygg+AT Tysg +Embysg loss.

(2.9) and aligning the hidden representation with the mean squared error [’HidMSE
(2.12)

M
B, _ paf .
‘Cl?élint(;yn+HidMSE - [’I(félinton +7- Z [’HidMSE(’ ’m)> (3-1)

m=1

where m is the index of the student layer, o, 5,7 € [0,1] witha + 5+ v = 1.
Notice that the loss function ﬁgift’gn +Hidyss (3.1) is similar to the loss function of
PKD [Sun et al., 2019], except that in this loss we consider all tokens, not just the

[CLS] token.

Hinton+Hidysg+ATTysg. Furthermore, we test the gain from incorporating the
mean-squared error attention loss £ ATT\SE (2.14). The full loss is then calculated
as

M
L0870 — LB +9 Z LarTyep(1m) (3.2)

Hinton+Hidysg+AT Tmse Hinton+Hidysg
m=1
where m is the index of the student layer, o, 8,7,6 € [0, 1] witha+ S +~v+d =
1. Again, notice that the LHinton+Hidysp+ATTyse 1058 (3.2) is similar to SID’s loss
[Aguilar et al., 2020], except that we use the mean squared error and consider all
tokens, not just the [CLS] token.

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 50

Hinton+Hidyisg/cos+AT Tysg+Embysg. We additionally use the mean-squared
embedding loss EEmbMSE' Using the equations (2.9), (2.12), (2.15) and (2.16), we
can define the full loss as
avﬁ?’Y?(iE _— a7ﬁ7’y76
EHth0n+HidMSE+ATTMSE+E1’1’1bMSE ~ ~Hinton+Hidysg+ATTyse te- L"EmbMSE(’)
with «, 8,7, 9, € € [0,1] with « + 8 + v + § + € = 1. Furthermore, we study the
cosine similarity to align hidden representations:
a,B,7,0,€ _ pa,By,0
EHinton+Hidcos+ATTMSE+EmbMSE - EHinton+Hidcos+ATTMSE +e- EEmbMSE(')

This loss is similar to the one used during task-distillation in TinyBert [Jiao et al.,
20201].

Hidysg/cos+AT Tyisg+Embysg. We additionally study the TinyBert loss func-
tion used during the general distillation stage (distilling on MLM task). The loss
consists of EHidMSE (2.12), EATTMSE (2.15) and £EmbMSE (2.16). Consequently,
the full loss can be defined as

M M
a,B,y _
[’HidMSE+ATTMSE+EmbMSE =a Z EHldMSE(’m) +8 Z EATTMSE(7m)
m=1 m=1

+ v ﬁEmbMSE(')

with o, B,y € [0, 1] witha+ 8+ = 1.

We study the effect of using different loss functions on the cross-lingual down-
stream task performance in Section 4.4.2 and on the cross-lingual alignment in
Section 4.5.1. The second part of the distillation loss is from which layers of the
teacher we distill. As already listed in Section 2.2.3, we study four different map-
pings: Uniform, Top, Bottom, and Last. To limit the computational cost of running
all experiments with these mapping functions, we restrict our experiments with
different mapping functions on the Hinton+Hidysg,/cos AT Tysg +tEmbygg dis-
tillation loss.

3.2.3 Sharing Across Students

We further study the effect of sharing components across students. Given student
models with M number of layers and where the M + 1 corresponds to the masked
language modeling head (MLM Head), we define gspqre € {0,1,..., M, M + 1}
as a subset of student layer indices that indicates which layers are shared across
students. We study three different scenarios:

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 51

MLM Head

Weight Tying
[== 1
‘ Transformer S« ’ ‘ Transformer S ’
Embedding Lsrc & Lig

Figure 3.1: Default setting of sharing components across students.

No Sharing (No Share). To give full flexibility to the student, we share nothing
between them: gspqre = {}. Therefore we allocate the full amount of parameters
in a student to one language.

Embedding Sharing (Emb Share). It is hypothesized that the embedding layer
is a significant factor in the cross-lingual ability of multilingual transformers [Wu
et al., 2019, Artetxe and Schwenk, 2019, Dufter and Schiitze, 2021]. E.g., Dufter
and Schiitze [2021] show that shared special tokens and shared position embed-
dings are essential factors. We, therefore, experiment with sharing embeddings
across students, gspqare = {0}, which then are jointly trained by all students during
distillation.

Everything Shared (Bilingual/Multilingual). The last option is a special case
where sharing everything between students: gspare = {0, 1, ..., M, M + 1} lead to
having one student. As we share everything, we essentially have just one student
that is then bi- or multilingual. We study this case in Section 4.4.4 and Section
453

MLM Head Tying. Transformer language models utilize weight tying between
the decoder of the masked language modeling head and the embedding layer. This
leads to a significantly smaller parameter number, and some works indicate an im-
provement in the language modeling and translation task [Press and Wolf, 2016,
Pappas et al., 2018]. We investigate both tying and having an independent embed-
ding layer and decoder in our work.

Our default setting is first to share the embeddings between students and tie the
weight of the embedding to the MLM head. This results in also sharing the MLM
head between students, i.e,. gshare = {0, M + 1}, see Figure 3.1. In Section 4.4.3

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 52

and in Section 4.5.2 we investigate what effects the embedding sharing and MLM
head tying setting have.

3.2.4 Initialization of Students

The last remaining option that we study is the initialization of our students. We
study the effect of two different initialization strategies for the students.

Random Initialization. We study students that are initialized from scratch.

Full Teacher Initialization. Finally, we initialize all student weights from the
teacher. The teacher layers are uniformly selected.

As a default, we always use the full teacher initialization option and study the effect
of random initialization in Section 4.4.3 and in Section 4.5.2.

3.3 Zero-Shot Fine-Tuning for Monolingual Students

We evaluate our cross-lingual representations across students by zero- and few-shot
downstream tasks. Fine-tuning monolingual students in a zero- and few-shot sce-
nario is not trivial: In the extreme case, we share nothing across students, and each
is monolingual. Therefore utilizing the default fine-tuning paradigm of multilin-
gual models on cross-lingual downstream tasks, i.e., fine-tuning the model on the
source language and evaluating the same fine-tuned model on the target language,
is not possible. This section explores different zero-shot (and few-shot) fine-tuning
strategies.

For clarification, we assume we have two students, one for the source language
Lygy. and one for the target language L;.,. Both were distilled after the training
procedure in Section 3.1.3 for the respective language. We then denote the student
corresponding to the source language as the source student S, and the one cor-
responding to the target language as the target student S;,.,. The question remains
how one can leverage the knowledge from the source labeled data into the target
student.

3.3.1 Full Student Fine-Tuning

Full Fine-tuning (FULL). Naively, one can fully fine-tune either source or target
model and use the same fine-tuned model to do zero-shot. We experiment with the
following:

Source (SRC). Fully fine-tuning the source model and using the fine-tuned source
model for evaluation on the target language.

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 53

(Training Data] [zero-ShotEvaluation | (Training Data J [ZeroShot Evaluation]

[Classification Layer]:">{ Classification Layer]

[Classification Layer]

[Layer(s) Added = Layer(s) Added)
X
\ Student Ssrc /StrgLayer M \
[StudentSscLayerM | [studentSwlayerM |
| Student Ssic/StgLayer 1 | Frozen— | Student Ssrc Layer 1] (Student Stg Layer 1)|
I ‘
Embedding Lsre/Ltg Embedding Lec & Luo |

Figure 3.2: Zero-Shot Fine-Tuning Strategies: (Left) Full Fine-tuning (FULL).
(Right) Freezing Source Model with one layer added (FREEZE - Add 1
Layer). Blue color indicates which components are being fine-tuned.

Target (TRG). Fully fine-tuning target model and using the fine-tuned target
model for evaluation on the target language.

The approach gives us the full model capacity to fine-tune on the downstream
task. We hope that by sharing some components, e.g., embedding sharing (Section
3.2.3), the source and target model have cross-lingual abilities such that fine-tuning
in the source language will automatically align the target language to the task. We
visualize the full fine-tuning strategy in Figure 3.2 (Left).

3.3.2 Freeze Source Student

Freezing Source Model (FREEZE). Another naive solution to keep the source and
target model aligned is to just fine-tune the task-specific source head on the source
language while keeping the source transformer model frozen. Additionally, we
can add (randomly initialized) transformer layers on top of the frozen transformer
model to increase model capacity. We then initialize the added layers and target
head from the source finetuned added layers and head and evaluate zero-shot. We
visualize this strategy in Figure 3.2 (Right).

3.3.3 Adapters

Task Adapters (ADAPT). To introduce parameters that enables us to transfer task-
specific knowledge into our target model we use adapters. The idea is that adapters
capture task-specific knowledge during fine-tuning and as source and target model
are somewhat aligned, we can utilize the modularity of adapters (see Section 2.3.1)
and transfer these to the target model. We denote the parameters of the source
model as Oy, target model as ©y,4, source adapters as ¢, and target adapters

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 54

[Training Data] [Zero-Shot Evaluation] (Training Data) (__Zero-Shot Evaluation |
[Classification Layer]:D{ Classification Layer]
[‘[Classification Layer] [Classification Layer]
Adapter M Adapter M v
7T e
Student Ssrc Layer M Student Stg Layer M .
Student Ssic Layer M | Bias Student Stg Layer M | Bias
—
Adapter 1 Adapter 1 s - :
Student Ssrc Layer 1 Student Stg Layer 1 J Student Ssrc Layer 1 | Bias Student Stg Layer 1 | Bias

T I T
Embedding Lse & Lig

Figure 3.3: Zero-Shot Fine-Tuning Strategies: (Left) Task Adapters on the source
model (ADAPT - SRC). (Right) BitFit on the source model (BitFit — SRC).
Blue color indicates which components are being fine-tuned.

as ¢y-g. We insert the same adapters into our source model and target model, i.e.,
Gsre = OQirg. We utilize the same placement and architecture as Pfeiffer et al.
[2021], see Section 2.3.1 for a more in-depth analysis. We then only fine-tune the
adapter parameters and the classification layer while freezing all other parameters
Osre, Org. We investigate three different fine-tuning strategies:

Source (SRC). We fine-tune the adapters based on the source model and transfer
the fine-tuned adapters and classification layer into our target model. We
then evaluate with the target model, see Figure 3.3 (Left).

Target (TRG). We fine-tune the adapters based on the target model. In this
case, we do not need to transfer any components since we evaluate with the
same fine-tuned model - with the target model.

Joint (JOINT). We fine-tune the adapters jointly with the source and target
model, i.e., calculate the loss on the source and target model with the same
adapter and jointly train them based on the averaged loss. E.g. ADAPT+JOINT
would mean that we insert the same adapters into the source and target
model, input a training instance into both models, calculate the loss for each
and average it to then jointly train the adapters based on the averaged loss.
See Figure 3.4 for a visualization.

3.3.4 BitFit

BitFit (BitFit). Another way to introduce task-specific parameters is by using
BitFit [Zaken et al., 2021], where we only fine-tune the bias parameters and the

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 55

[Training Data] [Zero-Shot Evaluation

|
J | |

[Classification Layer] { Classification Layer]

| |

‘ Adapter M ‘ ‘ Adapter M ‘

Student Ssrc Layer M Student Strg Layer M

‘ Adapter 1 ‘ ‘ Adapter 1 ‘

Student Ssrc Layer 1

Embedding Lsc & Lig

Figure 3.4: Zero-Shot Fine-Tuning Strategies: Joint training of adapters in source
and target model. The blue color indicates which components are being fine-tuned.

Student Stg Layer 1

task head while freezing the rest of the source model. Similar to adapters, we then
transfer the fine-tuned bias terms and task head in to our target model. Specifically,
as we already denoted in Section 2.1.5, the model parameters © are constructed

from the weight matrices W(l.’)('), bias vectors l(ﬁ()') and vectors gé.). In the Bit-
L())
b

Fit scenario, we only fine-tune the bias terms 0 while keeping W(lf) and gé.)
frozen.

As in the adapters scenario, we can either fine-tune the bias terms of the source
model (SRC) and transfer to the target model or fine-tune the bias terms of the
target model (TRG) directly, or jointly train them (JOINT).

3.3.5 Sparse Fine-Tuning

Sparse Fine-Tuning (SFT). This strategy is inspired by the idea of sparse fine-
tuning [Ansell et al., 2021]. At each fine-tuning step of the source model, we
calculate the difference vector ¢ at time step ¢ which is the difference between the
updated parameters of the source transformer model ©%! at time step ¢ + 1 and
the original parameter O . at time step ¢. We then add the difference vector ¢; to
the target model parameters O, o to get the updated target model parameters @;?Lgl.
Only the embeddings are frozen (and shared) across students.

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 56

3.3.6 Task Distillation

We further investigate task-specific distillation to try to improve downstream task
performance. We outline the task-specific distillation for zero-shot downstream
tasks: First, we fine-tune the teacher model on the downstream task with the labeled
source instances. We distill from the fine-tuned teacher by providing additional
teacher predictions on the source instances. The student then fine-tunes on the
teacher’s predictions and labels of the source instances. Notice that we utilize the
zero-shot fine-tuning strategies listed in the previous sections in this stage. Finally,
we evaluate the fine-tuned student on the target instances.

We only distill from the prediction layer of the teacher. The reason is that we
have many different zero-shot fine-tuning strategies where, in general, we can not
utilize other intermediate representations of the teacher. E.g., when we fine-tune
with adapters, we do not change any layer representations of the student and there-
fore can not incorporate layer distillation. We choose to employ a simple distilla-
tion strategy that can be applied to all zero-shot fine-tuning strategies: Minimizing
the mean squared difference between the logits produced by the teacher and the
logits produced by the student:

1
»Clogits = N Z Hzgj;E - Z;ﬁgT”%7
reX

where N is the number of examples, 2. ¥ the logit output of the fine-tuned teacher
and zgf T of the logit output of the student. Together with the MLM loss we get the
task distillation loss

Liask = £logits + 8- LmLMm-

In our experiments, we choose a = 0.5 and 5 = 0.5.

3.4 MonoAlignment & MonoShot

In the previous sections, we outlined different alternatives for the main components
of the monolingual setup, e.g., distillation loss and what to share across students.
In this section, we describe which strategies our approaches MonoAlignment
and MonoShot utilize. Again, MonoAlignment is specialized to maximize the
cross-lingual alignment of our monolingual students measured in the performance
of the retrieval task. In contrast, MonoShot tries to maximize the cross-lingual
downstream task performance.

Both approaches utilize embedding sharing across students, MLM head tying
(see Figure 3.1) and full initialization from the teacher (see Section 3.2.4). Further-
more, both uses the same base distillation loss Hint on+Hidusg +AT Tuse +Embuse

CHAPTER 3. MONOLINGUAL SETUP & STUDENTS 57

(see Section 3.2.2). The main difference between these two approaches is that
MonoAlignment uses the layer distillation mapping Last while MonoShot
utilizes Uniform,i.e. MonoAlignment distills from the last layer of the teacher
into the last layer of the student while MonoShot distills uniformly from the
teacher layers into the corresponding student layer. Furthermore, MonoShot em-
ploys the FULL TRG zero-shot fine-tuning strategy (see Section 3.3.1), i.e., fully
fine-tuning the target model and using the fine-tuned target model for evaluation.
We provide an heuristic argument of our approaches by comparing them to
many different alternatives. In Section 4.4.2 and Section 4.5.1 we lay out a thor-
oughly comparison of all the alternative distillation strategies listed in Section 3.2.2
to MonoShot and MonoAlignment. Furthermore, we study all alternative zero-
shot fine-tuning strategies (Section 3.3) coupled with MonoShot in Section 4.4.1.

Chapter 4

Experiments

In this chapter, we present and analyze the results of MonoAlignment for cross-
lingual alignment and MonoShot for cross-lingual downstream tasks. We first
specify the implementation for the teacher/student architecture, the dataset used
for the cross-lingual alignment, and the selected downstream tasks in Section 4.1.
In Section 4.2, we describe the training and fine-tuning setups. Additionally, we
define their hyperparameters, e.g. the learning rate and batch size. We then re-
port the results of our alignment method and downstream task method in Section
4.3. Finally, we split the analyzes of our proposed methods into the analyzes of
the downstream task performance (Section 4.4) and the cross-lingual alignment
(Section 4.5). Specifically, we analyze different zero-shot fine-tuning strategies
for MonoShot (Section 4.4.1) and evaluate the impact on the downstream task
performance and cross-lingual alignment for the following scenarios: Alternative
Knowledge Distillation strategies (Section 4.4.2 and Section 4.5.1), an ablation
study (Section 4.4.3 and Section 4.5.2) and changing to the bilingual setup (Sec-
tion 4.4.4 and Section 4.5.3).

4.1 Model and Dataset

Teacher. As we already discussed, we use XLM-R as our teacher and utilize the
implementation XLM-Rp,se from huggingfacel. The model XLM-Rpyse has L =
12 layers, a hidden size of H = 768, and A = 12 self-attention heads. XLM-Rpyse
has a large vocabulary size of 250K and has 12, 250M parameters in total.

Student. The student uses the same architecture as the teacher. We only vary the
number of layers L and keep everything the same as the teacher’s architecture. We

lhttps ://huggingface.co/x1lm-roberta-base

58

https://huggingface.co/xlm-roberta-base

CHAPTER 4. EXPERIMENTS 59

Task Corpus |Train| |Dev| | Test| Task Metric
Classification XNLI 392,702 2,490 5,010 NLI Acc.
Struct. pred. NER 20,000 10,000 1,000-10,000 NER F1
CSR SIQA & XCOPA 33410 100 500 MCC Acc.
Retrieval Tatoeba - - 1,000 Sent. Retrieval Acc.

Table 4.1: Downstream Tasks and their characteristics. For NER, sizes are in sen-
tences. Struct. pred.: structured prediction. Sent. retrieval: sentence retrieval.
Adopted from Hu et al. [2020].

choose L = 6 numbers of layers.

Training Set. We train (distill) on the recreated CC-100> corpus from [Conneau
etal., 2020, Wenzek et al., 2020] which contains monolingual text for over 100 lan-
guages, including our relevant languages English (en), Turkish (tr), Swahili (sw),
Urdu (ur) and Basque (eu). The dataset was constructed by scraping web pages
in many languages from January to December 2018. Our source language English
has a data size of 82 GB, whereas our target languages have the following data
sizes: Turkish has 5.4 GB, Swahili has 332 MB, Urdu has 884 MB, and Basque
has 488 MB in total. Among the target languages, Turkish has the highest data size
by far. Notice that we do not use any cross-lingual data during training.

Downstream Evaluation Tasks. For downstream evaluation, we use tasks from
4 different categories, each with one task, see Table 4.1. Each category requires
different levels of syntax or semantics understanding, e.g., words, phrases, and sen-
tences. Furthermore, each task includes typologically diverse languages making it
suitable to evaluate general-purpose cross-lingual representation and the general-
ization capabilities. All tasks are trained in a zero-shot and few-shot cross-lingual
transfer scenario. Zero-shot means we only use labeled English data and unlabeled
target language data during training. We do not use any additional data such as
human or machine-generated parallel text. In the few-shot scenario, we are given
additional labeled examples in the target language that we can use to train our
models. We describe each task in the following paragraph:

Retrieval: To evaluate our cross-lingual alignment, we use the Tat oeba dataset
[Artetxe and Schwenk, 2019], consisting of up to 1000 English-aligned sen-
tence pairs for 122 languages. The task is to find the correct translation by
finding the nearest neighbor for each sentence in the other language accord-
ing to a similarity score and computing the accuracy. We analyze the cosine
similarity and BERTScore [Zhang et al., 2019] as the similarity score. To

2Publicly available at ht tps://data.statmt.org/cc—100/.

https://data.statmt.org/cc-100/

CHAPTER 4. EXPERIMENTS 60

calculate the BERTScore, we use all token representation of each layer. We
refer to Zhang et al. [2019] for the exact calculation of BERTScore. We
study the retrieval for XX — English, where XX is the target language.

Classification: To evaluate sentence representations, we choose the cross-lingual
XNLT dataset [Conneau et al., 2018] for Natural Language Inference (NLI).
The dataset is an extension of the existing English datasets for NLT [Bowman
et al., 2015, Williams et al., 2017] to several languages. The validation and
test set was translated into 14 languages by professional translators. Specif-
ically, the task is to classify a sentence pair consisting of a premise and a
hypothesis whether they are either an entailment, contradiction, or neutral
relationship. To fine-tune, we first encode the sentence pair and use the final
hidden vector of the first input token ([CLS]) as the aggregate represen-
tation. We then add a classification layer with layer weights W € R3*H
where 3 is the number of labels and H is the hidden representation size. The
loss is the standard cross-entropy loss.

Structured prediction: To evaluate structural predictions, we use the NER task.
For this purpose, we chose the Wikiann [Pan et al., 2017] dataset. The
dataset consists of automatically labeled named entities LOC, PER and ORG
in Wikipedia by using a combination of knowledge base properties, cross-
lingual and anchor links, self-training, and data selection. We use the same
train, dev, and test split strategy as Rahimi et al. [2019]. Furthermore, we de-
ploy an identical training strategy as in the classification task, except we use
the individual token representation and its corresponding label to calculate
the loss.

Commonsense Reasoning. To evaluate the cross-lingual commonsense reason-
ing (CSR) performance, we use the XCOPA [Ponti et al., 2020] dataset for
evaluation, a cross-lingual multiple-choice classification (MCC) dataset. The
dataset is a translation of the English validation and test of COPA [Roemmele
et al., 2011] and was re-annotated into 11 target languages. Each instance
represents a premise, a question (question type of "What was the CAUSE?”
or ”"What happened as a RESULT?”), and two alternatives. As (X)COPA has
a minimal training size in English (400 instances), we follow the same setup
as Ponti et al. [2020]: Use SIQA [Sap et al., 2019], another MCC dataset, to
fine-tune models with labeled English instances and use XCOPA to evaluate
in a different language. An instance in SIQA? consists of a premise, a ques-
tion, and three possible answers. To solve this task, we concatenate each

3SIQA has unconstrained questions.

CHAPTER 4. EXPERIMENTS 61

‘ Training Time

Stage Batch Size XNLI/NER/XCOPA Optimizer LR Weight Decay LR Scheduler
General-Purpose Distillation 16 500,000 Steps AdamW 2e-4 0.01 Linear+10% Warm-Up
Zero-Shot Fine-Tuning 64 10/20/20 Epochs AdamW 2e-5 0.05 Linear+10% Warm-Up
Few-Shot Fine-Tuning 32 50/50/ 50 Epochs AdamW 2e-5 0.05 -

Table 4.2: Hyperparameters of each training stage.

candidate answer with the corresponding question and passage*. We then
encode each sequence and pass the resulting [CLS] representations through
a fully-connected layer, which is used to predict the correct answer. The
predicted answer corresponds to the triple with the highest probability.

4.2 Experimental Setup

This section outlines the hyperparameters of all training and evaluation procedures,
such as batch size and learning rate (LR). Particularly, we define the hyperparam-
eters of the general-purpose distillation in Section 4.2.1, the zero-shot fine-tuning
in Section 4.2.2 and the few-Shot fine-tuning in Section 4.2.3. Furthermore, we
summarize the hyperparameters in Table 4.2.

4.2.1 General-Purpose Distillation

As we already discussed in Section 3.2, we use the following default setting: The
layers of the students are initialized uniformly by the teacher, we share the em-
beddings between students and tie the embedding with the decoder of the masked
language modeling head if not otherwise stated.

We train (distill) on the CC-100 Corpus, see Section 4.1. Since the training
is computational and memory intensive, we choose a batch size of only 16. Fur-
thermore, we chose the standard optimizer AdamW [Loshchilov and Hutter, 2019]
with a learning rate of 0.0002 with weight decay 0.01. We adjust the learning rate
with a linear scheduler with warm-up steps of 50, 000. In total, we train the models
with 500, 000 steps.

4.2.2 Zero-Shot Downstream Task Fine-tuning

We consider the cross-lingual zero-shot setup as a downstream task. We first
fine-tune on the English dataset and then provide the system with samples in the

* As we use XLM-R models, we concatenate as follows: <s> context </s> </s> question </s>
</ s> choice </s>

CHAPTER 4. EXPERIMENTS 62

target language without any annotations. We only have one model in the bilin-
gual/multilingual setup that we then fine-tune on the source language and evaluate
with the same model in the target language. This poses a challenge in our mono-
lingual student setup as we have separate models for each language. Our proposed
method MonoShot deploys the FULL TRG zero-shot fine-tuning strategy (see
Section 3.3.1). In Section 4.4.2 we compare and analyze the fine-tuning strategies
listed in Section 3.3.

We optimize all strategies with the standard AdamW optimizer [Loshchilov
and Hutter, 2019] with a weight decay of 0.05 and a linear learning rate schedule
with 10% warm-up steps. We choose a batch size of 64 and a high learning rate
of 0.0001 for parameter-efficient fine-tuning strategies as they introduce new (ran-
domly) initialized parameters. For the full fine-tuning strategy FULL we utilize a
(standard) lower learning rate of 2e — 5 as all parameters are initialized from the
pre-training. We fine-tune for 10 epochs for XNLI and 20 epochs for NER and
SIQA/XCOPA.

4.2.3 Few-Shot Downstream Task Fine-tuning

In the few-shot scenario, we are given n numbers of labeled instances in the target
language. First, we use the same fine-tuning strategy as in the zero-shot scenario
to leverage the task-specific knowledge from the source language. In the bilin-
gual/multilingual setup, we then fine-tune the bilingual/multilingual model on the
additional labeled instances. In the monolingual setup, we only fine-tune the target
model on these.

Again, we optimize with the standard AdamW optimizer [Loshchilov and Hut-
ter, 2019] with a weight decay of 0.05 and a linear learning rate schedule with 10%
warm-up steps with a learning rate of 2e — 5. We choose a batch size of 32. We
fine-tune for 50 epochs for XNLI, NER and SIQA/XCOPA.

4.3 Results

In this section, we present the results of our proposed method MonoAlignment
to improve cross-lingual alignment and MonoShot for downstream tasks. First,
we select relevant baselines in Section 4.3.1 and compare them to our proposed
alignment method on the cross-lingual alignment task in Section 4.3.2. Finally, we
report and compare the performance of MonoShot in the cross-lingual zero-shot
(Section 4.3.3) and few-shot downstream tasks (Section 4.3.4)

CHAPTER 4. EXPERIMENTS 63

4.3.1 Baselines

We select two subsets of baselines: One subset for the alignment task and one for
the cross-lingual downstream tasks.

Alignment Baselines. For the alignment task, we process all instances with a
pre-trained 12-layer XLM-R model. During the retrieval task, we consider the
following layer representations:

* XLM-Rgsg: All 12 layers.

* XLM-R4-ALIGNMENT (Uniform): Only every second layer representa-
tion, i.e. the 1th, 3th, 5th, 7th, 9th and 11th layer.

* XLM-R4-ALIGNMENT (Top): Only the top 4 layers.

* XLM-R4-ALIGNMENT (Middle): Only the middle 4 layers, i.e. the 5th,
6th, 7th and 8th layer.

* XLM-R4-ALIGNMENT (Bottom): Only the bottom 4 layers.

Furthermore, we analyze single layer representations for the retrieval task.

Downstream Task Baselines. For the cross-lingual downstream tasks, we analyze
the following baselines:

* XLM-Rppse: A pre-trained 12 layers XLM-R model which we used as the
teacher.

* XLM-Rg (Uniform): A 6 layer XLM-R model where the layers are initial-
ized by every second layer of the pre-trained XLM-Rgysg model.

* XLM-Rg (Top): A 6 layer XLLM-R model where the layers are initialized by
the 6 top layers of the pre-trained XLM-Rgsg model.

* XLM-Rg (Bottom): A 6 layer XLM-R model where the layers are initial-
ized by the first 6 layers of the pre-trained XLM-Rgysg model.

Notice that the XLLM-Rg-ALIGNMENT baselines are not separate models but just
different subsets of layer representations of XLM-Rppsg. On the other hand, XLLM-
Rg are separate 6 layer models, initialized from different layers of XLM-Rg,sg. All
XLM-R models correspond to the implementation xlm-roberta-base from
huggingface”.

Shttps://huggingface.co/xlm-roberta-base

https://huggingface.co/xlm-roberta-base

CHAPTER 4. EXPERIMENTS 64

Strategy BERTScore Cosine Similarity

tr-en sw-en ur-en eu-en |Average | tr-en sw-en ur-en eu-en |Average
XLM-Rgase 0.310 0.139 0.143 0.166 0.190 0.545 0.151 0.332 0.276 0.326
XLM-Rg-ALIGNMENT (Uniform) | 0.242 0.131 0.098 0.138 0.152 0.501 0.146 0.306 0.256 0.302
XLM-R4-ALIGNMENT (Top) 0.509 0.146 0.280 0.163 0.274 0.601 0.092 0.342 0.213 0.312

XLM-R4-ALIGNMENT (Middle) 0.528 0.164 0.240 0.227 0.290 0.682 0.146 0.352 0.302 0.371
XLM-R4-ALIGNMENT (Bot tom) 0.135 0.014 0.029 0.053 0.058 0.369 0.123 0.152 0.150 0.199
MonoAlignment-XLM-Rg 0.478 0.280 0.428 0.314 0.375 0.494 0.223 0.287 0.261 0.316

Table 4.3: We report the accuracy of the retrieval task on the test set of Tatoeba
(XTREME) based on the similarity scores BERTScore and Cosine Similarity. We
average across language pairs in column Average for each similarity score. The
bold numbers in the upper table indicate the best accuracy for the baselines in each
language pair for each similarity score. The bold numbers in the bottom table
indicate if our approach outperforms the best baseline in the respective language
pair and similarity score.

4.3.2 Cross-Lingual Alignment

In this part, we study the induced cross-lingual alignment of MonoAlignment
by analyzing the performance of the retrieval task on the Tatoeba dataset and com-
paring them to our selected baselines. We report the performance on the Tatoeba
test set on the target languages Turkish, Swahili, Urdu, and Basque in Table 4.3.
Notice that in this section, we do not report alignments of different Knowledge
Distillation strategies but have a separate section dedicated to analyzing different
strategies (Section 4.5.1).

Comparing XLM-R Baselines. First, we observe that XLM-R4-ALIGNMENT
(Middle) performs best among all other baselines and XLM-R4-ALIGNMENT
(Bottom) performs notably worse. We explain this behavior in the following two
paragraphs by looking at using individual layer representations for the retrieval
task. Finally, we notice that the retrieval with the cosine similarity in almost all
language pairs and baselines performs better than with the BERTScore.

Comparing MonoAlignment. With the similarity score BERTScore our approach
MonoAlignment-XLM-Rg reaches an average accuracy of 0.375 and outper-
forms all other baselines, improving the best baseline XLM-R4-ALTIGNMENT (Middle)
by +0.085. On the other hand, when we only consider the Cosine Similarity, our
method is inferior to the baseline XLLM-R4-ALIGNMENT (Middle) by —0.055.

The strength of our method is using the similarity score BERTScore for re-
trieval: First, we observe that using MonoA1lignment-XLM-Rg with the BERTScore
yields higher accuracy than using it with the Cosine Similarity - except for the t r
- en language pair. Secondly, when we compare MonoAlignment-XLM-Rg
paired with BERTScore, it outperforms every baseline - regardless of whether we

CHAPTER 4. EXPERIMENTS 65

Retrievel Task Across Layers on Turkish Retrievel Task Across Layers on Swahili

ent - BERTScore

i H [

Retrievel Task Across Layers on Basque

Figure 4.1: Comparison of different model sentence representations with the cosine
similarity and the BERTScore for the Tatoeba retrieval task on the tr—en (top-
left), sw—en (top-right), ur—en language pair (bottom-left) and eu—en language
pair (bottom-right).

pair the baseline with BERTScore or Cosine Similarity. This holds true for ev-
ery language pair except the tr — en language pair. We hypothesize that since
the teacher already has a strong cross-lingual alignment for the language pair tr
— en, further improving the alignment in an unsupervised fashion is challeng-
ing. On the other hand, our method excels in improving the alignment between
the languages that have a weak alignment in the teacher, e.g., the pairs sw —
en, ur — en and eu — en. On average, our approach MonoShot beats the
teacher by 40.185 with BERTScore. Interestingly, while for the teacher model,
the cosine similarity performs better than BERTScore (on average), for our method
MonoAlignment it is the opposite.

Individual Layer Representation. To further analyze the alignment of our method,
we compare individual layer representations for retrieval of MonoAlignment-
XLM-Rg and the teacher XLLM-RpasE, see Figure 4.1. When we look at the layers
in isolation, we first make the observation that the bottom layers of the XLM-
Rpase model have the worse alignment performance revealing that representations
in early layers are not aligned well. Moreover, the middle layers perform the best
among other layers. The alignment then decreases in deeper layers. This behavior
is also reflected in our selected baselines. Looking at the retrieval across layers
for MonoAlignment-XLM-R¢ we immediately see that BERTScore is virtually

CHAPTER 4. EXPERIMENTS 66

Strategy XNLI NER XCOPA
tr SW tr SW tr SW Average

XLM-Rpage 0.717 0.644 0.693 0.632 0.562 0.544 0.632
XLM-R¢ (Uniform) 0.647 0.554 0.559 0.590 0.538 0.536 0.571
XLM-R¢ (Bottom) 0.662 0.598 0.621 0.588 0.508 0.548 0.588
XLM-Rg (Top) 0.394 0.350 0.343 0.409 0.510 0.488 0.416
MonoShot-XLM-Rg 0.679 0.625 0.650 0.627 0.555 0.556 0.615
MonoShot-XLM-Re+TD | 0.681 0.634 0.640 0.616 0.552 0.528 0.601

Table 4.4: Results on XNLI, NER, and XCOPA for different Knowledge Distilla-
tion strategies target languages {¢r, sw} on the dev set. The best results across 6
layer models are in-bold. In column Average, we average across all downstream
tasks and languages.

outperforming the cosine similarity in every layer. Additionally, we notice that
the early layers of MonoAlignment-XLM-R¢ are much better aligned than the
teacher. Only the last layer of the student and teacher behave similarly in the re-
trieval task - This is expected as we distill the representation of the last layer of the
teacher into the last layer of the student. Importantly, we see that the best perform-
ing student layer (3th or 4th layer) with BERTScore is considerably outperforming
the best-performing teacher layer with either BERTScore or Cosine Similarity.

Interpretation. We hypothesize that through the high model capacity, XLM-
Rpase spreads out the lexical semantics of tokens throughout layers and therefore
performs poorly paired with BERTScore. This results in a better retrieval per-
formance by mean-pooling the representations to calculate the cosine similarity
to capture the sentence’s overall meaning. Through the distillation into a smaller
model and pre-training on the MLM task, we compress the overall token repre-
sentations into a much smaller space. We, therefore, build up stronger lexical se-
mantics per token representation. We investigate this assumption in Section 4.5.1
more.

Conclusively, MonoAlignment coupled with BERTScore outperforms the cross-
lingual alignment of the teacher considerably in low-resource languages such as
Swahili, Urdu, and Basque.

4.3.3 Zero-Shot Results

We evaluate MonoShot on the test set of each task along with the selected base-
lines in Section 4.3.1. We report the zero-shot downstream task performance in
Table 4.4.

CHAPTER 4. EXPERIMENTS 67

Comparing MonoShot. MonoShot-XLM-Rg reaches a score of 0.615 on aver-
age, outperforming every XLM-Rg model. Compared to XLM-Rg (Top), which
performs the best among the XLM-Rg models, we have a performance increase
of 4+0.027 on average. Even when we look at each task and target language,
MonoShot-XLM-Rg consistently exceeds any XLM-R¢ baseline. Nonetheless,
when comparing to the teacher XLLM-Rg,., we still see that MonoShot underper-
forms —0.031 points on average. We only see an increase in accuracy on XCOPA.
However, this effect can be explained by the high variance on XCOPA since the
sample size of the test set is very small.

We hypothesize that the model capacity is too low to learn the task efficiently
to reach the same performance as the teacher. Therefore we also conduct task-
distillation with XLM-Rg,s model as the teacher. However, we see a decrease of
—0.014 in performance. Since Jiao et al. [2020] show that they can significantly
improve their downstream task performance with task distillation, we hypothesize
that only using the logits as additional information is not enough.

Initialization of XLM-Rg. The results show that among the XLM-Rg models
initialized from different layers of the XL.M-Rp,sc model, XLM-Rg (Top) performs
worse than any other 6 layer model with an average score of 0.416. Top layers are
more specialized towards the pre-training task [Clark et al., 2019a], i.e., MLM,
and therefore are not optimal for cross-lingual transfer tasks. On the other hand,
bottom layers are more task-agnostic and lend themselves to cross-lingual transfer
tasks. This is indicated in the performance of XLM-Rg (Bottom), which is the
best performing XLM-R¢g model. XLLM-R¢ (Uniform) is a mix of XLM-R¢ (Top)
and XLM-R¢ (Bottom), which is reflected in its performance, outperforming the
former by +0.048 and underperforming the latter by —0.017.

Conclusively, our proposed MonoShot-XLM-Rg is a strong 6 layer model for
cross-lingual downstream tasks but falls short in comparison to the XLM-Rpgse
model.

4.3.4 Few-Shot Results

We further investigate the cross-lingual few-shot downstream task performances
of MonoShot. For this purpose we additionally fine-tune the trained models from
the previous Section 4.3.3 on a few labeled instances in the target language. In the
monolingual setup, we only fine-tune the trained (monolingual) target model. We
report the results for Turkish and Swahili in Table 4.5.

We first make some general observations: In the XNLI task, providing the
model with a few Turkish samples does not significantly improve performance for
any method. However, we see a more significant improvement for the more low-

CHAPTER 4. EXPERIMENTS 68

Strategy - Turkish XNLI - Turkish NER - Turkish XCOPA - Turkish
k=0 k=10 k=100 k=500 k=0 k=10 k=100 k=500 k=0 k=10 k=50 k=100
XLM-Rpgse 0.717 0.701 0.717 0.727 0.693 0.742 0.822 0.853 0.562 0.586 0.590 0.636

XLM-R¢ (Uniform) 0.647 0.638 0.643 0.657 0.559 0.657 0.772 0.813 0.538 0.510 0.540 0.544
XLM-R¢ (Bottom) 0.662 0.663 0.668 0.671 0.621 0.677 0.771 0.819 0.548 0.508 0.522 0.562
XLM-Rg (Top) 0.394 0.438 0476 0.545 0.394 0.378 0.582 0.680 0.510 0.488 0.498 0.524
MonoShot-XLM-Rs 0.679 0.654 0.680 0.684 0.650 0.699 0.787 0.823 0.555 0.544 0.532 0.558

Strategy - Swahili XNLI - Swahili NER - Swahili XCOPA - Swahili
k=0 k=10 k=100 k=500 k=0 k=10 k=100 k=500 k=0 k=10 k=50 k=100
XLM-Rpgse 0.644 0.654 0.652 0.688 0.632 0.620 0.838 0.891 0.544 0.544 0.580 0.566

XLM-R¢ (Uniform) 0.554 0.543 0.572 0.585 0.590 0.668 0.806 0.850 0.536 0.514 0.528 0.560
XLM-R¢ (Bottom) 0.598 0.592 0.612 0.614 0.588 0.639 0.827 0.871 0.548 0.508 0.522 0.562
XLM-Rg (Top) 0.394 0377 0413 0432 0.409 0.529 0.734 0.830 0.488 0.488 0.494 0510
MonoShot-XLM-Rs 0.625 0.654 0.648 0.667 0.627 0.644 0.810 0.890 0.556 0.544 0.532 0.588

Table 4.5: We report the few-shot performance of the selected baselines and
MonoShot on the test set for Turkish (top) and Swahili (bottom). Bold numbers
indicate the best performing 6 layer model.

resource language, Swahili. E.g., with k& = 500 samples on XNLI, the XLM-R
model improves its Turkish performance by +0.01 accuracy, but for Swabhili, the
increase is much higher with +0.044. Furthermore, the few labels increase the
performance considerably for the NER task. On the other hand, XCOPA is still
hard to learn even when providing the system with a few labeled instances.

Comparing MonoShot. We see the same pattern then in the zero-shot scenario:
XLM-Rg(Bottom) performs the best across the XLM-Rg model baselines. Our
approach MonoShot-XLM-Rg¢ exceeds all XLM-Rg baselines. Again, the teacher
still far surpasses our approach MonoShot-XLM-Rg. Only on the NER task in
the Swahili language do we get very close to the teacher.

4.4 Analysis of Downstream Task Performance

In the previous Section 4.3, we presented the results of our two distillation ap-
proaches MonoAlignment and MonoShot. In this section, we dive into the
analysis of both methods’ cross-lingual downstream task performance. We first
note that the zero-shot fine-tuning of monolingual students consists of two main
training procedures: The general Knowledge Distillation to obtain general-purpose
students and the zero-shot fine-tuning technique. To find the best performing® com-
bination, however, one has to fully evaluate every distillation strategy (10 strate-
gies) coupled with the different fine-tuning strategies (12 strategies) in 2 different
languages. This is unfeasible as we are restricted in computational power and time.
Therefore, to further analyze MonoShot and its cross-lingual downstream task

®Measured in performance in zero-shot cross-lingual downstream tasks.

CHAPTER 4. EXPERIMENTS 69

Strategy Adapters BitFit SFT FREEZE FULL
SRC TRG JOINT SRC TRG JOINT +0 Layer +2Layer +4Layer | SRC TRG
XNLI - TR 0.565 0.664 0.672 0.510 0579 0.579 0.621 0.449 0.600 0.646 | 0.360 0.684
NER - TR 0.575 0.622 0.631 0.387 0.499 0.501 0.628 0.340 0.482 0.492 | 0.453 0.653
XCOPA-TR | 0.61 0.66 0.65 0.56 0.58 0.55 0.59 0.60 0.61 0.55 0.55 0.66
XNLI - sw 0.526 0.616 0.610 0.476 0.536 0.544 0.585 0.389 0.500 0.542 | 0425 0.614
NER - sW 0.553 0.636 0.622 0.356 0366 0.348 0.622 0.0 0.483 0.540 | 0.541 0.651
XCOPA-sw | 060 0.66 0.67 053 060 0.58 0.60 0.60 0.61 0.60 0.54 0.64
Avg ‘ 0572 0.643 0.643 0,470 0.527 0.517 0.608 0.396 0.548 0.562 ‘ 0.478 0.650

Table 4.6: Results on XNLI, NER and XCOPA for different zero-shot fine-tuning
strategies coupled with the distillation strategy of MonoShot on Turkish (Top
Half Table) and Swahili (Bottom Half Table) reported on the dev set. The best
results across all fine-tuning strategies are in-bold. We average across the target
languages and downstream tasks. Our proposed method MonoShot deploys the
FULL (TRG) strategy.

performance, we split the discussion into two parts: (1) First, we discuss alternative
zero-shot fine-tuning techniques in Section 4.4.1 such as Adapters and BitFit. (2)
Secondly, we discuss different Knowledge Distillation strategies and their impact
onto the cross-lingual downstream task performance based on the same zero-shot
fine-tuning strategy as MonoShot in Section 4.4.2.

4.4.1 Alternative Zero-Shot Fine-Tuning Strategies

We first study different zero-shot fine-tuning strategies: Adapters, BitFit, SFT,
freezing layers, and fully fine-tuning the source or target model, see Section 3.3
for more details on each strategy. As we already discussed, we are computational
restricted and therefore only evaluate each fine-tuning strategy based on pre-trained
(distilled) students with the MonoShot Knowledge Distillation strategy, see Sec-
tion 3.2.2 for more details on the distillation strategy. We report the performance of
all fine-tuning strategies on the target languages Turkish and Swahili in Table
4.6. We average across all downstream tasks and languages to select the best zero-
shot fine-tuning strategy. Note that MonoShot fully fine-tunes the target model in
the zero-shot setting, which corresponds to the FULL TRG strategy.

Bitfit. BitFit is not performing on par with any other method. Training the bias
terms of the source models and transferring them to the target model (SRC) only
reaches an average score of 0.470. While training the bias terms directly in the
target model (TRG) increases the performance by +0.057, it still lacks far behind
other methods. We observe the same for jointly training the bias terms (JOINT);
however, the average increase is less. We explain the poor behavior as follows: In
BitFit, we have to share the bias terms across source and target models. As we have
to choose which bias terms we want to share, e.g., the source model’s bias terms,

CHAPTER 4. EXPERIMENTS 70

we inevitably have to destroy any information that resides in the pre-trained bias
terms in the other model. This results in information loss and may be the reason
why BitFit underperforms for our setup.

Adapters. Training adapters exceeds BitFit considerably in every training setup
(SRC, TRG and JOINT). E.g., training Adapters only with the target model results
in an average score of 0.643, an increase of 40.116 in comparison to BitFit
TRG. In contrast to BitFit, Adapters do not destroy any pre-trained parameters
but add new randomly initialized parameters to the model, which might explain
the increase in performance. Furthermore, training jointly (JOINT) or only with
the target model (TRG) results in the second-best performing zero-shot fine-tuning
strategy after the Full TRG strategy. It is, however, the best parameter-efficient
fine-tuning strategy, as we only add 3.6% parameters per task. By contrast, the
Full TRG strategy needs to fine-tune 100% of the parameters per task.

SRC vs. TRG vs. JOINT. We notice that training Adapters/bias terms solely with
the source model (SRC) and then transferring the fine-tuned components into the
target model is not competitive to training directly with the target model (TRG)
or training jointly (JOINT). This hints that the source and target model are not
perfectly aligned and may represent different information at each layer. Therefore
the modularity of the adapters and bias terms can not fully be utilized as in Section
3.3.3 and Section 3.3.4 hypothesized. It is necessary to consider the target model
during the fine-tuning process.

SFT. In our modified version of Sparse Fine-Tuning, the target model takes the
same updates during the fine-tuning of the source model. We hope to induce the
acquired task-specific knowledge into the target model. However, as we already
saw in the Joint vs. SRC/TRG setup, the source and target model are not
perfectly aligned. Therefore, STF lacks behind other methods that consider both
models while fine-tuning. Nonetheless, when we compare SFT to Adapters
SRC and BitFit SRC, all methods that do not consider the target model, SFT
comes out on top by +0.036 and +0.138 respectively. This may indicate that using
the full model capacity to fine-tune on the task is more valuable.

FREEZE. When we only train the task-head and keep everything else frozen (+0
Layer), the model can not capture the task. The reason is that the task head, which
is the only part being fine-tuned, is not complex enough to create a powerful class
separation. This argument is supported by the fact that increasing the complexity
by adding layers that can be fine-tuned also increases performance on downstream
tasks. E.g., adding 4 layers outperforms adding no layers by 4+0.166. However,
adding 4 layers to the model is still lacking behind other methods, even though we
add and increase a substantial amount of parameters to the model.

CHAPTER 4. EXPERIMENTS 71

FULL. In the case of fine-tuning the full source model and using the fine-tuned
source model to evaluate in the target language, the source model loses most cross-
lingual knowledge and only reaches an average score of 0.478. It, therefore, can
not perform in the target language and only excels at the source language which it
was distilled and fine-tuned for (but still lacks behind the teacher - we do not report
the English performance here as it is not our goal). However, directly fine-tuning
the target model performs the best across all zero-shot fine-tuning strategies with
an average score of 0.650. FULL TRG also performs best across many tasks and
languages, e.g., for XNLI in Turkish, it reaches a score of 0.684, an increase of the
second-best performing strategy (Adapters TRG) by +0.02. It shows that the
target model can train on English instances and retain knowledge about the target
language outperforming all other methods. We attribute the high performance of
FULL TRG to the utilization of the full model capacity while having a high degree
of target-language-specific parameters. Compared to the other methods, fully fine-
tuning uses a much higher number of parameters. Additionally, except for SFT,
FULL is the only method to modify the embedding layer of the models, which
might help learn the task as most parameters reside in the embedding layer. Fur-
thermore, compared to the FULL SRC strategy, which “forgets” most of the tar-
get language knowledge, the FULL TRG strategy uses the target language-specific
model for fine-tuning, which helps to keep this knowledge.

In conclusion, the FULL TRG fine-tuning strategy results in the best score on av-
erage and is also the leading strategy on many tasks and languages. We, therefore,
show that MonoShot which utilizes FULL TRG uses the most effective zero-shot
fine-tuning strategy.

4.4.2 Alternative Knowledge Distillation Strategies

In the previous section, we found that fully fine-tuning directly on the target model
FULL TRG - the zero-shot fine-tuning strategy that MonoShot deploys - worked
well across all tasks and languages. This section will analyze how different Knowl-
edge Distillation strategies influence the cross-lingual zero-shot downstream per-
formance. We report the results in Table 4.7.

Different Component Distillation. We first analyze the effect of distilling differ-
ent parts of the teacher on downstream task performance. Only distilling from the
logits via the Hinton Loss (Hinton) underperforms on all tasks with an average
score of 0.552. This suggests that only distilling information from the logits is not
enough to create a cross-lingual representation that can be used for downstream
tasks. The reason might be that imitating the logits can be done in many ways
through different layer parameterizations that are not optimal for downstream task

CHAPTER 4. EXPERIMENTS 72

Strategy XNLI NER XCOPA

tr SW tr SW tr SW AVG
Hinton 0.506 0.533 0.595 0.609 0.53 0.54 | 0.552
Hinton+Hidysg (Uniform) 0.648 0.604 0.625 0.644 0.64 0.64 | 0.634
Hinton+Hidysg+AT Tysg (Uniform) 0.663 0.608 0.652 0.642 0.63 0.67 || 0.644
Hinton+Hidysg+AT Tyvsg+Embysg (Uniform)=MonoShot 0.684 0.614 0.654 0.644 0.66 0.64 || 0.649
Hidymsg+ATTymsg+Embyse (Uniform) 0.678 0.614 0.621 0.636 0.59 0.58 || 0.620
Hinton+Hidcos+ATTymsg+Embyse (Uniform) 0.660 0.608 0.644 0.646 0.63 0.68 || 0.645
Hinton+Hidcos+ATTyvsg+Embysg (Bottom) 0.641 0.575 0.605 0.601 0.61 0.63 | 0.610
Hinton+Hidysg+AT Tysp+Embyse (Top) 0666 0.616 0647 0.654 065 0.62 | 0.642
Hinton+Hidysg+AT Tysg+Embysg (Bottom) 0.653 0.577 0.622 0.605 0.59 0.65 | 0.616
Hinton+Hidymsp+ATTvsg+Embyisg (Last)=MonoAlignment | 0.571 0.574 0.604 0.544 0.63 0.57 || 0.582

Table 4.7: We report on the dev set of XNLI, NER, and XCOPA for different
Knowledge Distillation strategies in the target languages {¢r, sw}. The best results
across all distillation strategies are in-bold. In column AVG, we average across
downstream tasks and target languages.

performance.

Additional information about intermediate representations via distilling the
hidden states (Hinton+Hidwsg (Uniform)) greatly improves performance across
all downstream tasks. On average, the method increases by +0.082 points in com-
parison to Hinton. The results are consistent across languages, which also con-
firm the findings of numerous works [Romero et al., 2015, Sun et al., 2019, Jiao
et al., 2020, Sanh et al., 2020]. Specifically, intermediate representations serve as
hints for the student during distillation to improve downstream task performance.

We furthermore incorporate the attention distribution with the distillation loss
Hinton+Hidygg+ATT (Uniform). The loss shows a slight improvement by
+0.01 on average. It was shown that attention weights learned by the teacher
capture substantial linguistic knowledge [Clark et al., 2019b] which encourages
our students to learn these linguistic hints and, in turn, improves downstream tasks.

Aligning the embeddings between teacher and student with the distillation
loss Hinton+Hidysg +ATTysg+Embyse (Uniform) minimally increases per-
formance by 0.005. Since we initialize the student embedding from the teacher em-
bedding, we hypothesize that the student already has a strong embedding represen-
tation that is not being improved by a further alignment through the mean squared
error. Nevertheless, other works [Pires et al., 2019, Wu and Dredze, 2019, Dufter
and Schiitze, 2021] have shown that the embedding is an important factor for the
cross-lingual ability of the model. Notice that Hint on+Hidygg +AT Tysg +Embuse
(Uniform) which distills every component of the teacher corresponds to the dis-
tillation strategy deployed by MonoShot.

We finally study the effect of the MLM task by removing the Hinton Loss
from MonoShot (Hidysg+ATTusg+Embyse (Uniform)) and we observe a de-

CHAPTER 4. EXPERIMENTS 73

crease in performance by —0.029 on average. This shows that the MLM task is
an important factor in inducing better general-purpose students for cross-lingual
downstream tasks.

Different Loss Functions. We discuss the choice of the loss function to align hid-
den representations. We analyze two popular choices: Mean Squared Error (MSE)
and Cosine Similarity (COS). We compare Hinton+ Hidusg +ATTysg+Embyse
(Uniform) vsHinton+ Hidcos +ATTusp+Embyse (Uniform) and Hinton+
Hidusg +ATTysgtEmbysg (Bottom) vsHinton+ Hideog +ATTysg+tEmbuse
(Bottom). In both comparisons, we see a slight decline in performance when
switching from aligning the hidden representations with mean squared error to
the cosine similarity. Hinton+Hidcos+ATTysg+Embyse (Uniform) loses on
average —0.004 points in comparison to the mean squared error variant and the
other loss Hinton+Hideos+ATTysg+Embysg (Bottom) loses —0.006. How-
ever, the decline is only minimal. We conclude that both loss functions are a good
choice to induce strong cross-lingual downstream task performance.

Different Mapping Functions. We furthermore discuss different mapping func-
tions which determine from which layers of the teacher we distill from. We discuss
the loss function Hint on+Hidygg +AT Tysg +Embysg with the mapping functions:
Uniform, Top, Bottomand Last.

We observe that only distilling from the last layer of the teacher into the last
layer of the student (Last) has only 0.582 points on average and is substantially
worse than other mapping functions. Notice that this distillation strategy corre-
sponds to the distillation strategy of MonoAlignmnet, which, as we know, cre-
ates a strong token alignment representation (see Section 4.3.2). Although only
taking information from the last layer creates a strong token alignment, it does
not lend itself for cross-lingual downstream tasks. In Section 4.5.1 we discuss the
correlation of cross-lingual alignment with downstream task performance.

Distilling from the bottom layers of the teacher (Bottom) reaches 0.616 on
average and is —0.026 points worse than distilling from the top layers (Top). This
somehow contradicts our first observations in Section 4.3.3 where 6 layer models
(XLM-R¢) initialized from bottom layers performed better than top layers. We
argue that because the upper part of the teacher is more suitable for the retrieval
task (see Section 4.3.2) and therefore more language-agnostic, this could positively
influence the distillation and the performance in a cross-lingual setting.

The best-performing mapping function is uniformly distilling (Uni form) with
0.645 points on average. This is in line with the findings of Jiao et al. [2020] in the
monolingual case.

We thoroughly investigated different strategies to distill cross-lingual knowledge
from the teacher. The best strategy to maximize cross-lingual downstream task

CHAPTER 4. EXPERIMENTS 74

MLM Head MLM Head
MLM Head MLM Head 1

r T T T

Transformer S« } (Transformer Sw } ‘ Transformer Sy } [Transformer Sw }

I]

Embedding Lue Embedding Lig Embedding Lec & Lig

Figure 4.2: (Left) w/o Emb Sharing: Independent Student Models. (Right) w/o
Output Tie: We remove the tying between the MLM head and Embedding Layer.
Notice that in the default setting, tying results in sharing the MLLM head between
students.

Weight Tying

Weight Tying |

Strategy XNLI NER XCOPA
tr SW tr SW tr SW AVG
MonoShot-XLM-Rg 0.684 0.614 0.654 0.644 0.66 0.64 0.649

MonoShot-XLM-Rg w/o Emb Sharing | 0.660 0.614 0.645 0.635 0.65 0.61 0.635
MonoShot-XLM-Rg w/o Teacher Init | 0.622 0.596 0.598 0.597 0.55 0.65 || 0.6020
MonoShot-XLM-Rg w/o Output Tie 0.654 0.604 0.590 0.630 0.53 0.67 | 0.613

Table 4.8: Ablation study on embedding sharing, teacher initialization and output
tying. We report results on the dev set of XNLI, NER, XCOPA for the target
languages {tr, sw}.

performance is Hinton+Hidysg+ATTysg+Embysg (Uniform), i.e., distilled
from every component of the teacher, choosing the teacher layers to distill from
uniformly and using the mean squared error to align the hidden representations of
teacher and student. Conclusively, we showed that MonoShot performs the best
among different Knowledge Distillation strategies.

4.4.3 Ablation Study

All studies have been conducted by (1) sharing the embeddings across our mono-
lingual students, (2) initialization the weights of our students from the teacher
weights, and (3) we tied the embedding layer with the decoder of the masked lan-
guage modeling head. In this section, we evaluate how these settings influence the
downstream task performance of MonoShot. We visualize the different settings
that we analyze in Figure 4.2 (see Figure 3.1 for the default setting). We report the
results on the dev set in Table 4.8.

Effect of Embedding Sharing. We remove the sharing of the embedding layer

CHAPTER 4. EXPERIMENTS 75

between students, see Figure 4.2 (Left). For the Turkish language, we see a sub-
stantial decline in all downstream tasks. On the other hand, Swahili maintains
the same performance in XNLI and loses minimally in NER and XCOPA tasks.
Without sharing embeddings across students, we lose —0.014 average points. This
suggests that when we share embeddings across students, we gain a stronger cross-
lingual representation for downstream tasks. Notice that our students are indepen-
dent of each other in this scenario, i.e., we do not share anything across students.
Therefore we show that sharing components across students is essential.

Effect of Teacher Initialization. In our default setting, we use the weights from
the teacher (selected uniformly across layers). We study the effects of training
our students from scratch, i.e., initializing the weights randomly. We see a strong
decrease across all tasks and languages (except for Swahili in XCOPA), losing
—0.045 points on average. As our training time during distillation is relatively
short in comparison to the training times of XLM-Rp,se, We can not efficiently
train students from scratch. The amount of parameters, especially in the embedding
layer, is too high.

Effect of Output Tying. We remove the weight tying between the MLM head
and embedding layer. Through the weight untying, we also do not share the MLM
head between students anymore; see Figure 4.2 (Right). This has a negative effect
across most tasks and languages. On average, we lose —0.036 points without the
output tying. Through the output tying, we first reduce the number of parameters
massively and secondly improve downstream task performance, which is in line
with other works [Press and Wolf, 2016].

Conclusively, our chosen default setting is performing the best compared to the
settings we analyzed in this section.

4.4.4 Bilingual Setup

To see the effects of sharing everything across students, we conduct experiments
with one bilingual student distilled with the same Knowledge Distillation as our ap-
proach MonoShot and experiment with a subset of different distillation strategies.
We report the results in Table 4.9

MonoShet in Bilingual Setup. We use the same Knowledge Distillation strategy
as in MonoShot but in the bilingual setup. This strategy then reaches an average
score of 0.656 across downstream tasks, which is a slight increase of 40.007 in
comparison to MonoShot. This already shows that sharing components across
students helps to create a stronger cross-lingual representation for downstream
tasks.

CHAPTER 4. EXPERIMENTS 76

Strategy XNLI NER XCOPA

tr SW tr SW tr SW AVG
Hinton+Hidysg+AT Tvsg+Embysg (Uniform)=MonoShot 0.684 0.614 0.654 0.644 0.66 0.64 || 0.649
Hinton+Hidysg+ATTyvsg+Embysg (Last)=MonoAlignment | 0.571 0.574 0.604 0.544 0.63 0.57 || 0.582

Bilingual-Hinton+Hidysg+AT Tysg+Embysg (Uniform) 0.684 0.636 0.668 0647 0.66 0.64 || 0.656
Bilingual-Hinton+Hidcos+ATTysg+Embysg (Uniform) 0.696 0.631 0.643 0.658 0.68 0.64 | 0.658
Bilingual-Hinton+Hidysg+AT Tysg+Embysg (Last) 0.666 0613 0.619 0607 063 0.66 | 0.633

Table